I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[19880]
Open Access
Abstract: CodB is a cytosine transporter from the Nucleobase-Cation-Symport-1 (NCS1) transporter family, a member of the widespread LeuT superfamily. Previous experiments with the nosocomial pathogen Pseudomonas aeruginosa have shown CodB as also important for the uptake of 5-fluorocytosine, which has been suggested as a novel drug to combat antimicrobial resistance by suppressing virulence. Here we solve the crystal structure of CodB from Proteus vulgaris, at 2.4 Å resolution in complex with cytosine. We show that CodB carries out the sodium-dependent uptake of cytosine and can bind 5-fluorocytosine. Comparison of the substrate-bound structures of CodB and the hydantoin transporter Mhp1, the only other NCS1 family member for which the structure is known, highlight the importance of the hydrogen bonds that the substrates make with the main chain at the breakpoint in the discontinuous helix, TM6. In contrast to other LeuT superfamily members, neither CodB nor Mhp1 makes specific interactions with residues on TM1. Comparison of the structures provides insight into the intricate mechanisms of how these proteins transport substrates across the plasma membrane.
|
Jul 2022
|
|
I24-Microfocus Macromolecular Crystallography
|
Abstract: G protein-coupled receptors (GPCRs) play vital roles in human physiology and pathophysiology. This makes the elucidation of the high-resolution blueprints of these high value membrane proteins of crucial importance for the structure-based design of novel therapeutics. However, the production and crystallization of GPCRs for structure determination comes with many challenges.
In this chapter, we provide a comprehensive protocol for expressing and purifying the thromboxane A2 receptor (TPR), an attractive therapeutic target, for use in structure studies. Guidelines for crystallizing the TPR are also included. Together, these procedures provide a template for generating crystal structures of the TPR and indeed other GPCRs in complex with pharmacologically interesting ligands.
|
Jul 2022
|
|
I03-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Sophia
David
,
Joshua L. C.
Wong
,
Julia
Sanchez-Garrido
,
Hok-Sau
Kwong
,
Wen Wen
Low
,
Fabio
Morecchiato
,
Tommaso
Giani
,
Gian Maria
Rossolini
,
Stephen J.
Brett
,
Abigail
Clements
,
Konstantinos
Beis
,
David M.
Aanensen
,
Gad
Frankel
Diamond Proposal Number(s):
[23620]
Open Access
Abstract: Mutations in outer membrane porins act in synergy with carbapenemase enzymes to increase carbapenem resistance in the important nosocomial pathogen, Klebsiella pneumoniae (KP). A key example is a di-amino acid insertion, Glycine-Aspartate (GD), in the extracellular loop 3 (L3) region of OmpK36 which constricts the pore and restricts entry of carbapenems into the bacterial cell. Here we combined genomic and experimental approaches to characterise the diversity, spread and impact of different L3 insertion types in OmpK36. We identified L3 insertions in 3588 (24.1%) of 14,888 KP genomes with an intact ompK36 gene from a global collection. GD insertions were most common, with a high concentration in the ST258/512 clone that has spread widely in Europe and the Americas. Aspartate (D) and Threonine-Aspartate (TD) insertions were prevalent in genomes from Asia, due in part to acquisitions by KP sequence types ST16 and ST231 and subsequent clonal expansions. By solving the crystal structures of novel OmpK36 variants, we found that the TD insertion causes a pore constriction of 41%, significantly greater than that achieved by GD (10%) or D (8%), resulting in the highest levels of resistance to selected antibiotics. We show that in the absence of antibiotics KP mutants harbouring these L3 insertions exhibit both an in vitro and in vivo competitive disadvantage relative to the isogenic parental strain expressing wild type OmpK36. We propose that this explains the reversion of GD and TD insertions observed at low frequency among KP genomes. Finally, we demonstrate that strains expressing L3 insertions remain susceptible to drugs targeting carbapenemase-producing KP, including novel beta lactam-beta lactamase inhibitor combinations. This study provides a contemporary global view of OmpK36-mediated resistance mechanisms in KP, integrating surveillance and experimental data to guide treatment and drug development strategies.
|
Jul 2022
|
|
I24-Microfocus Macromolecular Crystallography
|
Samuel L.
Rose
,
Seiki
Baba
,
Hideo
Okumura
,
Svetlana V.
Antonyuk
,
Daisuke
Sasaki
,
Tobias M.
Hedison
,
Muralidharan
Shanmugam
,
Derren J.
Heyes
,
Nigel S.
Scrutton
,
Takashi
Kumasaka
,
Takehiko
Tosha
,
Robert R.
Eady
,
Masaki
Yamamoto
,
S. Samar
Hasnain
Open Access
Abstract: Many enzymes utilize redox-coupled centers for performing catalysis where these centers are used to control and regulate the transfer of electrons required for catalysis, whose untimely delivery can lead to a state incapable of binding the substrate, i.e., a dead-end enzyme. Copper nitrite reductases (CuNiRs), which catalyze the reduction of nitrite to nitric oxide (NO), have proven to be a good model system for studying these complex processes including proton-coupled electron transfer (ET) and their orchestration for substrate binding/utilization. Recently, a two-domain CuNiR from a Rhizobia species (Br2DNiR) has been discovered with a substantially lower enzymatic activity where the catalytic type-2 Cu (T2Cu) site is occupied by two water molecules requiring their displacement for the substrate nitrite to bind. Single crystal spectroscopy combined with MSOX (multiple structures from one crystal) for both the as-isolated and nitrite-soaked crystals clearly demonstrate that inter-Cu ET within the coupled T1Cu-T2Cu redox system is heavily gated. Laser-flash photolysis and optical spectroscopy showed rapid ET from photoexcited NADH to the T1Cu center but little or no inter-Cu ET in the absence of nitrite. Furthermore, incomplete reoxidation of the T1Cu site (∼20% electrons transferred) was observed in the presence of nitrite, consistent with a slow formation of NO species in the serial structures of the MSOX movie obtained from the nitrite-soaked crystal, which is likely to be responsible for the lower activity of this CuNiR. Our approach is of direct relevance for studying redox reactions in a wide range of biological systems including metalloproteins that make up at least 30% of all proteins.
|
Jul 2022
|
|
I03-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[24948]
Open Access
Abstract: Human topoisomerase II beta (TOP2B) modulates DNA topology using energy from ATP hydrolysis. To investigate the conformational changes that occur during ATP hydrolysis, we determined the X-ray crystallographic structures of the human TOP2B ATPase domain bound to AMPPNP or ADP at 1.9 Å and 2.6 Å resolution, respectively. The GHKL domains of both structures are similar, whereas the QTK loop within the transducer domain can move for product release. As TOP2B is the clinical target of bisdioxopiperazines, we also determined the structure of a TOP2B:ADP:ICRF193 complex to 2.3 Å resolution and identified key drug-binding residues. Biochemical characterization revealed the N-terminal strap reduces the rate of ATP hydrolysis. Mutagenesis demonstrated residue E103 as essential for ATP hydrolysis in TOP2B. Our data provide fundamental insights into the tertiary structure of the human TOP2B ATPase domain and a potential regulatory mechanism for ATP hydrolysis.
|
Jun 2022
|
|
I24-Microfocus Macromolecular Crystallography
|
Richard J.
Gildea
,
James
Beilsten-Edmands
,
Danny
Axford
,
Sam
Horrell
,
Pierre
Aller
,
James
Sandy
,
Juan
Sanchez-Weatherby
,
C. David
Owen
,
Petra
Lukacik
,
Claire
Strain-Damerell
,
Robin L.
Owen
,
Martin A.
Walsh
,
Graeme
Winter
Diamond Proposal Number(s):
[26986, 27088]
Open Access
Abstract: In macromolecular crystallography, radiation damage limits the amount of data that can be collected from a single crystal. It is often necessary to merge data sets from multiple crystals; for example, small-wedge data collections from micro-crystals, in situ room-temperature data collections and data collection from membrane proteins in lipidic mesophases. Whilst the indexing and integration of individual data sets may be relatively straightforward with existing software, merging multiple data sets from small wedges presents new challenges. The identification of a consensus symmetry can be problematic, particularly in the presence of a potential indexing ambiguity. Furthermore, the presence of non-isomorphous or poor-quality data sets may reduce the overall quality of the final merged data set. To facilitate and help to optimize the scaling and merging of multiple data sets, a new program, xia2.multiplex, has been developed which takes data sets individually integrated with DIALS and performs symmetry analysis, scaling and merging of multi-crystal data sets. xia2.multiplex also performs analysis of various pathologies that typically affect multi-crystal data sets, including non-isomorphism, radiation damage and preferential orientation. After the description of a number of use cases, the benefit of xia2.multiplex is demonstrated within a wider autoprocessing framework in facilitating a multi-crystal experiment collected as part of in situ room-temperature fragment-screening experiments on the SARS-CoV-2 main protease.
|
Jun 2022
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Ana S.
Luis
,
Arnaud
Basle
,
Dominic P.
Byrne
,
Gareth S. A.
Wright
,
James A.
London
,
Chunsheng
Jin
,
Niclas G.
Karlsson
,
Gunnar C.
Hansson
,
Patrick A.
Eyers
,
Mirjam
Czjzek
,
Tristan
Barbeyron
,
Edwin A.
Yates
,
Eric C.
Martens
,
Alan
Cartmell
Diamond Proposal Number(s):
[21970, 18598]
Abstract: Sulfated glycans are ubiquitous nutrient sources for microbial communities that have coevolved with eukaryotic hosts. Bacteria metabolize sulfated glycans by deploying carbohydrate sulfatases that remove sulfate esters. Despite the biological importance of sulfatases, the mechanisms underlying their ability to recognize their glycan substrate remain poorly understood. Here, we use structural biology to determine how sulfatases from the human gut microbiota recognize sulfated glycans. We reveal seven new carbohydrate sulfatase structures spanning four S1 sulfatase subfamilies. Structures of S1_16 and S1_46 represent novel structures of these subfamilies. Structures of S1_11 and S1_15 demonstrate how non-conserved regions of the protein drive specificity toward related but distinct glycan targets. Collectively, these data reveal that carbohydrate sulfatases are highly selective for the glycan component of their substrate. These data provide new approaches for probing sulfated glycan metabolism while revealing the roles carbohydrate sulfatases play in host glycan catabolism.
|
Jun 2022
|
|
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[18598]
Open Access
Abstract: Bacterial cell division is a complex process requiring the coordination of multiple components to allow the appropriate spatial and temporal control of septum formation and cell scission. Peptidoglycan (PG) is the major structural component of the septum, and our recent studies in the human pathogen Staphylococcus aureus have revealed a complex, multistage PG architecture that develops during septation. Penicillin-binding proteins (PBPs) are essential for the final steps of PG biosynthesis; their transpeptidase activity links the peptide side chains of nascent glycan strands. PBP1 is required for cell division in S. aureus, and here, we demonstrate that it has multiple essential functions associated with its enzymatic activity and as a regulator of division. Loss of PBP1, or just its C-terminal PASTA domains, results in cessation of division at the point of septal plate formation. The PASTA domains can bind PG and thereby potentially coordinate the cell division process. The transpeptidase activity of PBP1 is also essential, but its loss leads to a strikingly different phenotype of thickened and aberrant septa, which is phenocopied by the morphological effects of adding the PBP1-specific β-lactam, meropenem. Together, these results lead to a model for septal PG synthesis where PBP1 enzyme activity is required for the characteristic architecture of the septum and PBP1 protein molecules enable the formation of the septal plate.
|
Jun 2022
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Abstract: Cannabidiol (CBD), is a major non-psychoactive compound isolated from the cannabis plant and has been associated with the treatment of a range of conditions which are often related to voltage-gated sodium ion channels (VGSCs). The aim of this research was to use X-ray crystallography to provide a detailed insight into the interactions which occur between CBD and the prokaryotic VGSC NavMs. CBD was found to bind at a novel site deep within the fenestration of NavMs, near the central hydrophobic cavity (Sait et al., 2020). Binding at this site would block sodium ion translocation, thus providing a mechanistic explanation for CBD’s channel inhibitory effects, which were validated via electrophysiology experiments performed on designed mutants in collaborative studies with the Ruben lab (Simon Fraser University).In addition, modelling studies conducted suggested why the closely related psychoactive compound tetrahydrocannabinol (THC) may have different binding interactions with VGSCs. Comparisons were also made between the proposed Transient Receptor Potential Cation Subfamily V member 2 (TRPV2) channel CBD binding site and the NavMs binding site. Finally, thermal melt circular dichroism spectroscopic experiments were carried out to explore CBD interactions with NavMs, which showed CBD does not affect NavMs stability during interaction. In summary, this study provides, for the first time, an insight into the possible mechanism underlying CBD interactions with sodium channels.
|
Jun 2022
|
|
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[24948]
Open Access
Abstract: Bacteria are constantly challenged by bacteriophage (phage) infection and have developed multitudinous and varied resistance mechanisms. Bacteriophage Exclusion (BREX) systems protect from phage infection by generating methylation patterns at non-palindromic 6 bp sites in host bacterial DNA, to distinguish and block replication of non-self DNA. Type 1 BREX systems are comprised of six conserved core genes. Here, we present the first reported structure of a BREX core protein, BrxA from the phage defence island of Escherichia fergusonii ATCC 35469 plasmid pEFER, solved to 2.09 Å. BrxA is a monomeric protein in solution, with an all α-helical globular fold. Conservation of surface charges and structural homology modelling against known phage defence systems highlighted that BrxA contains two helix-turn-helix motifs, juxtaposed by 180°, positioned to bind opposite sides of a DNA major groove. BrxA was subsequently shown to bind dsDNA. This new understanding of BrxA structure, and first indication of BrxA biological activity, suggests a conserved mode of DNA-recognition has become widespread and implemented by diverse phage defence systems.
|
Jun 2022
|
|