I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[18069]
Open Access
Abstract: Protein ADP-ribosylation is a highly dynamic post-translational modification. The rapid turnover is achieved, among others, by ADP-(ribosyl)hydrolases (ARHs), an ancient family of enzymes that reverses this modification. Recently ARHs came into focus due to their role as regulators of cellular stresses and tumor suppressors. Here we present a comprehensive structural analysis of the enzymatically active family members ARH1 and ARH3. These two enzymes have very distinct substrate requirements. Our data show that binding of the adenosine ribose moiety is highly diverged between the two enzymes, whereas the active sites harboring the distal ribose closely resemble each other. Despite this apparent similarity, we elucidate the structural basis for the selective inhibition of ARH3 by the ADP-ribose analogues ADP-HPD and arginine-ADP-ribose. Together, our biochemical and structural work provides important insights into the mode of enzyme-ligand interaction, helps to understand differences in their catalytic behavior, and provides useful tools for targeted drug design.
|
Nov 2018
|
|
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[17844]
Abstract: The stringent response alarmones pppGpp and ppGpp are essential for rapid adaption of bacterial physiology to changes in the environment. In Escherichia coli, the nucleosidase PpnN (YgdH) regulates purine homeostasis by cleaving nucleoside monophosphates and specifically binds (p)ppGpp. Here, we show that (p)ppGpp stimulates the catalytic activity of PpnN both in vitro and in vivo causing accumulation of several types of nucleobases during stress. The structure of PpnN reveals a tetramer with allosteric (p)ppGpp binding sites located between subunits. pppGpp binding triggers a large conformational change that shifts the two terminal domains to expose the active site, providing a structural rationale for the stimulatory effect. We find that PpnN increases fitness and adjusts cellular tolerance to antibiotics and propose a model in which nucleotide levels can rapidly be adjusted during stress by simultaneous inhibition of biosynthesis and stimulation of degradation, thus achieving a balanced physiological response to constantly changing environments.
|
Apr 2019
|
|
I24-Microfocus Macromolecular Crystallography
|
Philippe
Riou
,
Svend
Kjær
,
Ritu
Garg
,
Andy
Purkiss
,
Roger
George
,
Robert J.
Cain
,
Ganka
Bineva
,
Nicolas
Reymond
,
Brad
Mccoll
,
Andrew
Thompson
,
Nicola
O'Reilly
,
Neil
Mcdonald
,
Peter J.
Parker
,
Anne J.
Ridley
Diamond Proposal Number(s):
[8015]
Open Access
Abstract: Signaling through G proteins normally involves conformational switching between GTP- and GDP-bound states. Several Rho GTPases are also regulated by RhoGDI binding and sequestering in the cytosol. Rnd proteins are atypical constitutively GTP-bound Rho proteins, whose regulation remains elusive. Here, we report a high-affinity 14-3-3-binding site at the C terminus of Rnd3 consisting of both the Cys241-farnesyl moiety and a Rho-associated coiled coil containing protein kinase (ROCK)-dependent Ser240 phosphorylation site. 14-3-3 binding to Rnd3 also involves phosphorylation of Ser218 by ROCK and/or Ser210 by protein kinase C (PKC). The crystal structure of a phosphorylated, farnesylated Rnd3 peptide with 14-3-3 reveals a hydrophobic groove in 14-3-3 proteins accommodating the farnesyl moiety. Functionally, 14-3-3 inhibits Rnd3-induced cell rounding by translocating it from the plasma membrane to the cytosol. Rnd1, Rnd2, and geranylgeranylated Rap1A interact similarly with 14-3-3. In contrast to the canonical GTP/GDP switch that regulates most Ras superfamily members, our results reveal an unprecedented mechanism for G protein inhibition by 14-3-3 proteins.
|
Apr 2013
|
|
I24-Microfocus Macromolecular Crystallography
|
Martine I.
Abboud
,
Philip
Hinchliffe
,
Jurgen
Brem
,
Robert
Macsics
,
Inga
Pfeffer
,
Anne
Makena
,
Klaus-Daniel
Umland
,
Anna M.
Rydzik
,
Guo-Bo
Li
,
James
Spencer
,
Timothy D. W.
Claridge
,
Christopher J.
Schofield
Diamond Proposal Number(s):
[8922]
Open Access
Abstract: Resistance to β-lactam antibiotics mediated by metallo-β-lactamases (MBLs) is a growing problem. We describe the use of protein-observe 19F-NMR (PrOF NMR) to study the dynamics of the São Paulo MBL (SPM-1) from β-lactam-resistant Pseudomonas aeruginosa. Cysteinyl variants on the α3 and L3 regions, which flank the di-ZnII active site, were selectively 19F-labeled using 3-bromo-1,1,1-trifluoroacetone. The PrOF NMR results reveal roles for the mobile α3 and L3 regions in the binding of both inhibitors and hydrolyzed β-lactam products to SPM-1. These results have implications for the mechanisms and inhibition of MBLs by β-lactams and non-β-lactams and illustrate the utility of PrOF NMR for efficiently analyzing metal chelation, identifying new binding modes, and studying protein binding from a mixture of equilibrating isomers.
|
Mar 2017
|
|
I03-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Luís A. R.
Carvalho
,
Vanessa T.
Almeida
,
Jose A.
Brito
,
Kenneth M.
Lum
,
Tânia F.
Oliveira
,
Rita C.
Guedes
,
Lídia M.
Gonçalves
,
Susana D.
Lucas
,
Benjamin F.
Cravatt
,
Margarida
Archer
,
Rui
Moreira
Diamond Proposal Number(s):
[20161]
Abstract: 3-Oxo-β-sultams are four-membered ring ambident electrophiles that can react with nucleophiles either at the carbonyl carbon or at the sulfonyl sulfur atoms, and that have been reported to inhibit serine hydrolases via acylation of the active-site serine residue. We have developed a panel of 3-oxo-β-sultam inhibitors and show, through crystallographic data, that they are regioselective sulfonylating electrophiles, covalently binding to the catalytic serine of human and porcine elastases through the sulfur atom. Application of 3-oxo-β-sultam-derived activity-based probes in a human proteome revealed their potential to label disease-related serine hydrolases and proteasome subunits. Activity-based protein profiling applications of 3-oxo-β-sultams should open up new opportunities to investigate these classes of enzymes in complex proteomes and expand the toolbox of available sulfur-based covalent protein modifiers in chemical biology.
|
Mar 2020
|
|
I24-Microfocus Macromolecular Crystallography
|
Abstract: The modified base 5-formylcytosine (5fC) was recently identified in mammalian DNA and might be considered to be the 'seventh' base of the genome. This nucleotide has been implicated in active demethylation mediated by the base excision repair enzyme thymine DNA glycosylase. Genomics and proteomics studies have suggested an additional role for 5fC in transcription regulation through chromatin remodeling. Here we propose that 5fC might affect these processes through its effect on DNA conformation. Biophysical and structural analysis revealed that 5fC alters the structure of the DNA double helix and leads to a conformation unique among known DNA structures including those comprising other cytosine modifications. The 1.4-Å-resolution X-ray crystal structure of a DNA dodecamer comprising three 5fCpG sites shows how 5fC changes the geometry of the grooves and base pairs associated with the modified base, leading to helical underwinding.
|
Dec 2014
|
|
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[17810]
Abstract: Monoolein, also referred to as 9.9 MAG, is the most commonly used monoacylglycerol for crystallizing membrane proteins by the in meso method. However, 9.9 MAG does not work for all proteins. Therefore, having available a suite of monoacylglycerols, the members of which differ in acyl chain characteristics such as chain length and position along the chain of the cis-olefinic bond, is an important screening feature. Several monoacylglycerols of this type are available and have proven their worth in enabling the structure determination of high-profile targets, including the β2-adrenoreceptor-Gs protein and the rhodopsin-arrestin complexes, and cytochrome caa3 oxidase. Here a new monoacylglycerol, 9.8 MAG, is introduced. Since the performance in crystallogenesis depends critically on the phase properties of the host lipid, the thermotropic and lyotropic mesophase behavior and microstructure of hydrated 9.8 MAG have been quantified by small-angle X-ray diffraction. The lipid is shown to be compatible with cholesterol at levels typically used in crystallization trials. Further, 9.8 MAG supports the crystallization and structure determination of two benchmark proteins: the α-helical lipoprotein N-acyltransferase, Lnt, and the β-barrel alginate transporter, AlgE. 9.8 MAG can now be included in host lipid screens to optimize the structure determination of a broader range of membrane proteins, many of which are scientifically and medically important.
|
Nov 2020
|
|
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[29990]
Open Access
Abstract: Since 2000, some thirteen quinolones and fluoroquinolones have been developed and have come to market. The quinolones, one of the most successful classes of antibacterial drugs, stabilize DNA cleavage complexes with DNA gyrase and topoisomerase IV (topo IV), the two bacterial type IIA topoisomerases. The dual targeting of gyrase and topo IV helps decrease the likelihood of resistance developing. Here, we report on a 2.8 Å X-ray crystal structure, which shows that zoliflodacin, a spiropyrimidinetrione antibiotic, binds in the same DNA cleavage site(s) as quinolones, sterically blocking DNA religation. The structure shows that zoliflodacin interacts with highly conserved residues on GyrB (and does not use the quinolone water–metal ion bridge to GyrA), suggesting it may be more difficult for bacteria to develop target mediated resistance. We show that zoliflodacin has an MIC of 4 µg/mL against Acinetobacter baumannii (A. baumannii), an improvement of four-fold over its progenitor QPT-1. The current phase III clinical trial of zoliflodacin for gonorrhea is due to be read out in 2023. Zoliflodacin, together with the unrelated novel bacterial topoisomerase inhibitor gepotidacin, is likely to become the first entirely novel chemical entities approved against Gram-negative bacteria in the 21st century. Zoliflodacin may also become the progenitor of a new safer class of antibacterial drugs against other problematic Gram-negative bacteria.
|
Jan 2023
|
|
I03-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Aline C.
Simon
,
Jin C.
Zhou
,
Rajika L.
Perera
,
Frederick
Van Deursen
,
Cecile
Evrin
,
Marina
Ivanova
,
Mairi L.
Kilkenny
,
Ludovic
Renault
,
Svend
Kjaer
,
Dijana
Matak-Vinković
,
Karim
Labib
,
Alessandro
Costa
,
Luca
Pellegrini
Diamond Proposal Number(s):
[9537]
Abstract: Efficient duplication of the genome requires the concerted action of helicase and DNA polymerases at replication forks1 to avoid stalling of the replication machinery and consequent genomic instability2, 3, 4. In eukaryotes, the physical coupling between helicase and DNA polymerases remains poorly understood. Here we define the molecular mechanism by which the yeast Ctf4 protein links the Cdc45MCMGINS (CMG) DNA helicase to DNA polymerase alpha; (Pol alpha) within the replisome. We use X-ray crystallography and electron microscopy to show that Ctf4 self-associates in a constitutive disk-shaped trimer. Trimerization depends on a beta-propeller domain in the carboxy-terminal half of the protein, which is fused to a helical extension that protrudes from one face of the trimeric disk. Critically, Pol alpha; and the CMG helicase share a common mechanism of interaction with Ctf4. We show that the amino-terminal tails of the catalytic subunit of Pol alpha; and the Sld5 subunit of GINS contain a conserved Ctf4-binding motif that docks onto the exposed helical extension of a Ctf4 protomer within the trimer. Accordingly, we demonstrate that one Ctf4 trimer can support binding of up to three partner proteins, including the simultaneous association with both Pol alpha; and GINS. Our findings indicate that Ctf4 can couple two molecules of Pol α to one CMG helicase within the replisome, providing a new model for lagging-strand synthesis in eukaryotes that resembles the emerging model for the simpler replisome of Escherichia coli5, 6, 7, 8. The ability of Ctf4 to act as a platform for multivalent interactions illustrates a mechanism for the concurrent recruitment of factors that act together at the fork.
|
May 2014
|
|
I02-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Régis
Stentz
,
Samantha
Osborne
,
Nikki
Horn
,
Arthur w. H.
Li
,
Isabelle
Hautefort
,
Roy
Bongaerts
,
Marine
Rouyer
,
Paul
Bailey
,
Stephen B.
Shears
,
Andrew M.
Hemmings
,
Charles A.
Brearley
,
Simon R.
Carding
Diamond Proposal Number(s):
[1219, 7641]
Open Access
Abstract: Dietary InsP6 can modulate eukaryotic cell proliferation and has complex nutritive consequences, but its metabolism in the mammalian gastrointestinal tract is poorly understood. Therefore, we performed phylogenetic analyses of the gastrointestinal microbiome in order to search for candidate InsP6 phosphatases. We determined that prominent gut bacteria express homologs of the mammalian InsP6 phosphatase (MINPP) and characterized the enzyme from Bacteroides thetaiotaomicron (BtMinpp). We show that BtMinpp has exceptionally high catalytic activity, which we rationalize on the basis of mutagenesis studies and by determining its crystal structure at 1.9 Å resolution. We demonstrate that BtMinpp is packaged inside outer membrane vesicles (OMVs) protecting the enzyme from degradation by gastrointestinal proteases. Moreover, we uncover an example of cross-kingdom cell-to-cell signaling, showing that the BtMinpp-OMVs interact with intestinal epithelial cells to promote intracellular Ca2+ signaling. Our characterization of BtMinpp offers several directions for understanding how the microbiome serves human gastrointestinal physiology.
|
Feb 2014
|
|