I06-Nanoscience
|
Diamond Proposal Number(s):
[9309]
Abstract: The growth and reactive dewetting of ultra-thin films of iron oxides supported on Re(0001) surfaces have been imaged in-situ in real time. Initial growth forms a non-magnetic stable FeO (wüstite like) layer in a commensurate network upon which high aspect ratio nanowires of several microns length but less than 40nm width can be fabricated. The nanowires are closely aligned with the substrate crystallography and imaging by X-ray magnetic circular dichroism shows that each contain a single magnetic domain. The driving force for dewetting appears to be the minimization of strain energy of the Fe3O4 crystallites and follows the Tersoff and Tromp model in which strain is minimized at constant height by extending in one epitaxially matched direction. Such wires are promising in spintronic applications and we predict that the growth will also occur on other hexagonal substrates.
|
Mar 2018
|
|
I06-Nanoscience
|
Diamond Proposal Number(s):
[10251]
Abstract: High-temperature superconducting (HTS) cuprate materials, with the ability to carry large electrical currents with no resistance at easily reachable temperatures, have stimulated enormous scientific and industrial interest since their discovery in the 1980's. However, technological applications of these promising compounds have been limited by their chemical and microstructural complexity and the challenging processing strategies required for the exploitation of their extraordinary properties. The lack of theoretical understanding of the mechanism for superconductivity in these HTS materials has also hindered the search for new superconducting systems with enhanced performance. The unexpected discovery in 2008 of HTS iron-based compounds has provided an entirely new family of materials for studying the crucial interplay between superconductivity and magnetism in unconventional superconductors. Alkali-metal-doped iron selenide (AxFe(2−y)Se2, A=alkali metal) compounds are of particular interest owing to the coexistence of superconductivity at relatively high temperatures with antiferromagnetism. Intrinsic phase separation on the mesoscopic scale is also known to occur in what were intended to be single crystals of these compounds, making it difficult to interpret bulk property measurements. Here, we use a combination of two advanced microscopy techniques to provide direct evidence of the magnetic properties of the individual phases. First, x-ray linear dichroism studies in a photoelectron emission microscope, and supporting multiplet calculations, indicate that the matrix (majority) phase is antiferromagnetic whereas the minority phase is nonmagnetic at room temperature. Second, cryogenic magnetic force microscopy demonstrates unambiguously that superconductivity occurs only in the minority phase. The correlation of these findings with previous microstructural studies and bulk measurements paves the way for understanding the intriguing electronic and magnetic properties of these compounds.
|
Feb 2018
|
|
I06-Nanoscience
|
Diamond Proposal Number(s):
[10361, 12565, 14135]
Abstract: The magnetoelectric effect in M-type Ti-Co doped strontium hexaferrite has been studied using a combination of magnetometry and element specific soft X-ray spectroscopies. A large increase (>×30) in the magnetoelectric coefficient is found when Co2+ enters the trigonal bi-pyramidal site. The 5-fold trigonal bi-pyramidal site has been shown to provide an unusual mechanism for electric polarization based on the displacement of magnetic transition metal (TM) ions. For Co entering this site, an off-centre displacement of the cation may induce a large local electric dipole as well as providing an increased magnetostriction enhancing the magnetoelectric effect.
|
Feb 2018
|
|
I06-Nanoscience
|
W.
Saenrang
,
B. A.
Davidson
,
F.
Maccherozzi
,
J. P.
Podkaminer
,
J.
Irwin
,
R. D.
Johnson
,
J. W.
Freeland
,
J.
Íñiguez
,
J. L.
Schad
,
K.
Reierson
,
J. C.
Frederick
,
C. A. F.
Vaz
,
L.
Howald
,
T. H.
Kim
,
S.
Ryu
,
M. V.
Veenendaal
,
P. G.
Radaelli
,
S. S.
Dhesi
,
M. S.
Rzchowski
,
C. B.
Eom
Diamond Proposal Number(s):
[12084, 13225, 11589]
Open Access
Abstract: Exploiting multiferroic BiFeO3 thin films in spintronic devices requires deterministic and robust control of both internal magnetoelectric coupling in BiFeO3, as well as exchange coupling of its antiferromagnetic order to a ferromagnetic overlayer. Previous reports utilized approaches based on multi-step ferroelectric switching with multiple ferroelectric domains. Because domain walls can be responsible for fatigue, contain localized charges intrinsically or via defects, and present problems for device reproducibility and scaling, an alternative approach using a monodomain magnetoelectric state with single-step switching is desirable. Here we demonstrate room temperature, deterministic and robust, exchange coupling between monodomain BiFeO3 films and Co overlayer that is intrinsic (i.e., not dependent on domain walls). Direct coupling between BiFeO3 antiferromagnetic order and Co magnetization is observed, with ~ 90° in-plane Co moment rotation upon single-step switching that is reproducible for hundreds of cycles. This has important consequences for practical, low power non-volatile magnetoelectric devices utilizing BiFeO3.
|
Nov 2017
|
|
I06-Nanoscience
|
Open Access
Abstract: Accurate evaluation of polarization states of the radiation is necessary for polarization-sensitive studies, which requires polarization optical elements, such as polarizer, analyzer, and phase retarder. In extreme ultraviolet (EUV) and soft X-ray region, the closeness of the real part of the refractive index to unity, coupled with high absorption, makes the realization of polarizers such as birefringence and dichroic polarizers impossible. Periodical multilayers are commonly used in polarization study working at the quasi-Brewster angle. To expand narrow spectral bandwidths of periodic multilayers, aperiodic and lateral gradual multilayer polarizers including reflective analyzers and transmission phase retarders are utilized. In this chapter, we demonstrate a series of periodic, aperiodic, and lateral gradual broadband multilayer polarizers with the material combinations of Mo/Si, Mo/Y, Mo/B4C, Cr/C, Cr/Sc, Cr/Ti, Cr/V, WSi2/Si, W/B4C, etc. Different multilayer polarizers correspond to different energy ranges, covering 50–1000 eV totally, including “water window” and the L absorption edges of Fe, Co, and Ni. Polarization measurements are performed at BESSY II, Diamond Light Source, National Synchrotron Radiation Laboratory in Hefei and Beijing Synchrotron Radiation Facility. Some of the polarizers we have developed are applied to the polarization measurements of BESSY II UE56/1-PGM and Beamline 3W1B of Beijing Synchrotron Radiation Facility.
|
Nov 2017
|
|
I06-Nanoscience
|
Elisabeth M.
Bothschafter
,
Elsa
Abreu
,
Laurenz
Rettig
,
Teresa
Kubacka
,
Sergii
Parchenko
,
Michael
Porer
,
Christian
Dornes
,
Yoav William
Windsor
,
Mahesh
Ramakrishnan
,
Aurora
Alberca
,
Sebastian
Manz
,
Jonathan
Saari
,
Seyed M.
Koohpayeh
,
Manfred
Fiebig
,
Thomas
Forrest
,
Philipp
Werner
,
Sarnjeet S.
Dhesi
,
Steven L.
Johnson
,
Urs
Staub
Diamond Proposal Number(s):
[13355, 13926]
Abstract: We investigate the demagnetization dynamics of the cycloidal and sinusoidal phases of multiferroic TbMnO3 by means of time-resolved resonant soft x-ray diffraction following excitation by an optical pump. The use of orthogonal linear x-ray polarizations provides information on the contribution from the different magnetic moment directions, which can be interpreted as signatures from multiferroic cycloidal spin order and sinusoidal spin order. Tracking these signatures in the time domain enables us to identify the transient magnetic phase created by intense photoexcitation of the electrons and subsequent heating of the spin system on a picosecond time scale. The transient phase is shown to exhibit mostly spin density wave character, as in the adiabatic case, while nevertheless retaining the wave vector of the cycloidal long-range order. Two different pump photon energies, 1.55 and 3.1 eV, lead to population of the conduction band predominantly via intersite d−d or intrasite p−d transitions, respectively. We find that the nature of the optical excitation does not play an important role in determining the dynamics of magnetic order melting. Further, we observe that the orbital reconstruction, which is induced by the spin ordering, disappears on a time scale comparable to that of the cycloidal order, attesting to a direct coupling between magnetic order and orbital reconstruction. Our observations are discussed in the context of recent theoretical models of demagnetization dynamics in strongly correlated systems, revealing the potential of this type of measurement as a benchmark for such theoretical studies.
|
Nov 2017
|
|
I06-Nanoscience
I10-Beamline for Advanced Dichroism
Theoretical Physics
|
Diamond Proposal Number(s):
[10191, 11500, 11501, 13047]
Abstract: X-ray detected ferromagnetic resonance (XFMR) has recently emerged as a powerful synchrotron-radiation-based tool able to study the element-selective magnetization dynamics. Magnetic and chemical contrast in XFMR is obtained by X-ray magnetic circular dichroism (XMCD), while the phase difference between the magnetization precessions is monitored using stroboscopic probing. A unique property of time-resolved XFMR is the visualization of the magnetization precession for each individual layer in a magnetic device. Measurement of the amplitude and phase response of the magnetic layers gives a clear signature of spin-transfer torque (STT) coupling between ferromagnetic layers due to spin pumping.
|
Oct 2017
|
|
I06-Nanoscience
I10-Beamline for Advanced Dichroism
|
C. J.
Durrant
,
L. R.
Shelford
,
R. A. J.
Valkass
,
R. J.
Hicken
,
A. I.
Figueroa
,
A. A.
Baker
,
G.
Van Der Laan
,
L. B.
Duffy
,
P.
Shafer
,
C.
Klewe
,
E.
Arenholz
,
S. A.
Cavill
,
J. R.
Childress
,
J. A.
Katine
Diamond Proposal Number(s):
[8782, 11585]
Abstract: Spin pumping has been studied within Ta / Ag / Ni81Fe19 (0–5 nm) / Ag (6 nm) / Co2MnGe (5 nm) / Ag / Ta large-area spin-valve structures, and the transverse spin current absorption of Ni81Fe19 sink layers of different thicknesses has been explored. In some circumstances, the spin current absorption can be inferred from the modification of the Co2MnGe source layer damping in vector network analyzer ferromagnetic resonance (VNAFMR)
experiments. However, the spin current absorption is more accurately determined from element-specific phase-resolved x-ray ferromagnetic resonance (XFMR) measurements that directly probe the spin transfer torque (STT) acting on the sink layer at the source layer resonance. Comparison with a macrospin model allows the real part of the effective spin mixing conductance to be extracted. We find that spin current absorption in the outer Ta layers has a significant impact, while sink layers with thicknesses of less than 0.6 nm are found to be discontinuous and super-paramagnetic at room temperature, and lead to a noticeable increase of the source layer damping. For the thickest 5-nm sink layer, increased spin current absorption is found to coincide with a reduction of the zero frequency FMR line width that we attribute to improved interface quality. This study shows that the transverse spin current absorption does not follow a universal dependence upon sink layer thickness but instead the structural quality of the sink layer plays a crucial role.
|
Oct 2017
|
|
I06-Nanoscience
|
Romeo
Juge
,
Soong-geun
Je
,
Dayane De Souza
Chaves
,
Stefania
Pizzini
,
Liliana D.
Buda-prejbeanu
,
Lucia
Aballe
,
Michael
Foerster
,
Andrea
Locatelli
,
Tevfik Onur
Menteş
,
Alessandro
Sala
,
Francesco
Maccherozzi
,
Sarnjeet S.
Dhesi
,
Stéphane
Auffret
,
Eric
Gautier
,
Gilles
Gaudin
,
Jan
Vogel
,
Olivier
Boulle
Diamond Proposal Number(s):
[13482]
Abstract: We report on the effect of the lateral confinement and a perpendicular magnetic field on isolated room-temperature magnetic skyrmions in sputtered Pt/Co/MgO nanotracks and nanodots. We show that the skyrmions size can be easily tuned by playing on the lateral dimensions of the nanostructures and by using external magnetic field amplitudes of a few mT, which allow to reach sub-100 nm diameters. Our XMCD-PEEM observations also highlight the important role of the pinning on the skyrmions size and stability under an out-of-plane magnetic field. Micromagnetic simulations reveal that the effect of local pinning can be well accounted for by considering the thin film grain structure with local anisotropy variations and reproduce well the dependence of the skyrmion diameter on the magnetic field and the geometry.
|
Oct 2017
|
|
I06-Nanoscience
I16-Materials and Magnetism
|
Diamond Proposal Number(s):
[13226, 13991, 10201, 12837, 15087]
Abstract: For over half a century, the technological promise of spins manipulable by a small voltage has captivated the interest of experimental and theoretical researchers alike. However, if thin-film multiferroics are to be incorporated into future data storage devices, a much greater understanding of their behaviour and how they differ from their bulk counterparts is required. In this thesis, we probe the fundamental multiferroic properties of BiFeO3 films through a combination of state-of-the-art diffraction and microscopy techniques. We investigate the coupling between magnetic, ferroelectric, and structural order, with a focus on domains, and how the domain structure may be manipulated in order to tailor the multiferroic properties of the material.
Using non-resonant magnetic x-ray scattering (NXMS) and neutron diffraction, we study the magnetic and structural properties of (111)pc-oriented BiFeO3 films. Contrary to the general belief that to they grow as a rhombohedral monodomain, we find that they comprise a sub-micron texture of monoclinic domains. The magnetic structure is found to be intimately coupled to the structure, resulting in the propagation vector being locked to the monoclinic b-axis. This magnetoelastic coupling opens up a route to strain-engineer the magnetic domains via epitaxial strain. By growing BiFeO3 films on a lower-symmetry, TbScO3 substrate, we are able to engineer a magnetic, structural and ferroelectric monodomain, coherent over the entire film, constituting an increase in the domain size by over five orders of magnitude.
We directly demonstrate the coupling between ferroelectric and magnetic order parameters of the cycloidal magnetic structure. Using NXMS polarimetry to measure directly the magnetic polarity, we show that upon switching the ferroelectric polarisation, the magnetic polarity switches accordingly---a major rearrangement of the magnetic structure, with each spin rotating by 90 degrees on average. This goes counter to idea that magnetic and ferroelectric order parameters are only weakly coupled in type-I multiferroics.
Finally, using photoemission electron microscopy we are able to directly image the sub-micron magnetostructural domain structure. We further show that there is a strong interfacial coupling between the magnetostructural domains of BiFeO3 with a ferromagnetic overlayer. The BiFeO3 domains are found to impose a uniaxial anisotropy in the overlayer, opening up a route to control ferromagnetic domains.
|
Sep 2017
|
|