Krios I-Titan Krios I at Diamond
Krios II-Titan Krios II at Diamond
Krios IV-Titan Krios IV at Diamond
|
Jianbing
Ma
,
Gangshun
Yi
,
Mingda
Ye
,
Craig
Macgregor-Chatwin
,
Yuewen
Sheng
,
Ying
Lu
,
Ming
Li
,
Qingrong
Li
,
Dong
Wang
,
Robert J. C.
Gilbert
,
Peijun
Zhang
Diamond Proposal Number(s):
[29812]
Open Access
Abstract: The cryo-electron microscopy (cryoEM) method has enabled high-resolution structure determination of numerous biomolecules and complexes. Nevertheless, cryoEM sample preparation of challenging proteins and complexes, especially those with low abundance or with preferential orientation, remains a major hurdle. We developed an affinity-grid method employing monodispersed single particle streptavidin on a lipid monolayer to enhance particle absorption on the grid surface and alleviate sample exposure to the air-water interface. Using this approach, we successfully enriched the Thermococcus kodakarensis mini-chromosome maintenance complex 3 (MCM3) on cryoEM grids through biotinylation and resolved its structure. We further utilized this affinity method to tether the biotin-tagged dsDNA to selectively enrich a stable MCM3-ATP-dsDNA complex for cryoEM structure determination. Intriguingly, both MCM3 apo and dsDNA bound structures exhibit left-handed open spiral conformations, distinct from other reported MCM structures. The large open gate is sufficient to accommodate a dsDNA which could potentially be melted. The value of mspSA affinity method was further demonstrated by mitigating the issue of preferential angular distribution of HIV-1 capsid protein hexamer and RNA polymerase II elongation complex from Saccharomyces cerevisiae.
|
Dec 2024
|
|
Krios I-Titan Krios I at Diamond
|
Diamond Proposal Number(s):
[19865]
Abstract: Maintaining genome integrity is an essential and challenging process. RAD51 recombinase, the central player of several crucial processes in repairing DNA and protecting genome integrity, forms filaments on DNA, which are tightly regulated. One of these RAD51 regulators is FIGNL1, that prevents persistent RAD51 foci without or after DNA damage and genotoxic chromatin association in cells. The cryogenic electron microscopy structure of FIGNL1 in complex with RAD51 reveals that FIGNL1 forms a non-planar hexamer and RAD51 N terminus enclosure in the FIGNL1 hexamer pore. Mutations in pore loop or catalytic residues of FIGNL1 render it defective in filament disassembly and are lethal in mouse embryonic stem cells. Our study reveals a unique mechanism for removing RAD51 from bound substrates and provides the molecular basis for FIGNL1 in maintaining genome stability.
|
Dec 2024
|
|
Krios I-Titan Krios I at Diamond
|
Open Access
Abstract: The ESCRT-III-like protein Vipp1 couples filament polymerization with membrane remodeling. It assembles planar sheets as well as 3D rings and helical polymers, all implicated in mitigating plastid-associated membrane stress. The architecture of Vipp1 planar sheets and helical polymers remains unknown, as do the geometric changes required to transition between polymeric forms. Here we show how cyanobacterial Vipp1 assembles into morphologically-related sheets and spirals on membranes in vitro. The spirals converge to form a central ring similar to those described in membrane budding. Cryo-EM structures of helical filaments reveal a close geometric relationship between Vipp1 helical and planar lattices. Moreover, the helical structures reveal how filaments twist—a process required for Vipp1, and likely other ESCRT-III filaments, to transition between planar and 3D architectures. Overall, our results provide a molecular model for Vipp1 ring biogenesis and a mechanism for Vipp1 membrane stabilization and repair, with implications for other ESCRT-III systems.
|
Nov 2024
|
|
Krios I-Titan Krios I at Diamond
Krios II-Titan Krios II at Diamond
|
Diamond Proposal Number(s):
[36390]
Open Access
Abstract: The yeast SWR1 complex catalyses the exchange of histone H2A–H2B dimers in nucleosomes, with Htz1–H2B dimers1,2,3. Here we used single-molecule analysis to demonstrate two-step double exchange of the two H2A–H2B dimers in a canonical yeast nucleosome with Htz1–H2B dimers, and showed that double exchange can be processive without release of the nucleosome from the SWR1 complex. Further analysis showed that bound nucleosomes flip between two states, with each presenting a different face, and hence histone dimer, to SWR1. The bound dwell time is longer when an H2A–H2B dimer is presented for exchange than when presented with an Htz1–H2B dimer. A hexasome intermediate in the reaction is bound to the SWR1 complex in a single orientation with the ‘empty’ site presented for dimer insertion. Cryo-electron microscopy analysis revealed different populations of complexes showing nucleosomes caught ‘flipping’ between different conformations without release, each placing a different dimer into position for exchange, with the Swc2 subunit having a key role in this process. Together, the data reveal a processive mechanism for double dimer exchange that explains how SWR1 can ‘proofread’ the dimer identities within nucleosomes.
|
Nov 2024
|
|
Krios I-Titan Krios I at Diamond
|
Open Access
Abstract: Background incl. aims: Antibiotic resistance is a global health crisis with the ever growing need to develop novel antibiotics and strategies to treat resistant infections. Bacteriophage therapy is often highlighted as an alternative approach due to its high specificity to kill a certain bacterial strain. However, bacteriophage propagate through a replication cycle within the target bacterium, with the potential to generate mutations with detrimental consequences. Strains of Pseudomonas sp. produce phage tail-like bacteriocins (PTLBs) which have evolved from bacteriophage. Although sharing many similarities, they differ from bacteriophage lacking a capsid and therefore the ability to replicate. These unique features highlight the potential of PTLBs as an alternative therapy to treat bacterial infections as they can be tittered to a specific dose. However, for PTLBs to be implemented as a bactericidal treatment, further information is needed regarding their structure, mechanism of action and how they recognise their target strains. We have isolated a contracting PTLB from an environmental strain of P. veronii and determined its structure by cryo-EM. Methods: The PTLB was purified by ammonium sulphate precipitation and visualised by cryo-EM. The structure of the PTLB was determined using a combination approach of single particle and helical analysis. Results: The structure was determined of a new clade of contracting PTLBs in both its uncontracted and contracted states. We also identified the lack of a ‘ruler protein’ for the purified PTLBs, observing varying lengths in the collected micrographs. Conclusion: We solved the structure of a novel contracting PTLB and show that it shares structural similarities with the previously characterised contractile nanomachine from P. aeruginosa. We also observe that inconsistent lengths of PTLBs does not appear to affect the lethality of the PTLB to its target strain.
|
Oct 2024
|
|
Krios I-Titan Krios I at Diamond
|
Diamond Proposal Number(s):
[31827]
Open Access
Abstract: Small-molecule degraders of disease-driving proteins offer a clinically proven modality with enhanced therapeutic efficacy and potential to tackle previously undrugged targets. Stable and long-lived degrader-mediated ternary complexes drive fast and profound target degradation; however, the mechanisms by which they affect target ubiquitination remain elusive. Here, we show cryo-EM structures of the VHL Cullin 2 RING E3 ligase with the degrader MZ1 directing target protein Brd4BD2 toward UBE2R1-ubiquitin, and Lys456 at optimal positioning for nucleophilic attack. In vitro ubiquitination and mass spectrometry illuminate a patch of favorably ubiquitinable lysines on one face of Brd4BD2, with cellular degradation and ubiquitinomics confirming the importance of Lys456 and nearby Lys368/Lys445, identifying the “ubiquitination zone.” Our results demonstrate the proficiency of MZ1 in positioning the substrate for catalysis, the favorability of Brd4BD2 for ubiquitination by UBE2R1, and the flexibility of CRL2 for capturing suboptimal lysines. We propose a model for ubiquitinability of degrader-recruited targets, providing a mechanistic blueprint for further rational drug design.
|
Oct 2024
|
|
Krios I-Titan Krios I at Diamond
|
Victoria A.
Avanzato
,
Trenton
Bushmaker
,
Kasopefoluwa Y.
Oguntuyo
,
Claude Kwe
Yinda
,
Helen M. E.
Duyvesteyn
,
Robert
Stass
,
Kimberly
Meade-White
,
Rebecca
Rosenke
,
Tina
Thomas
,
Neeltje
Van Doremalen
,
Greg
Saturday
,
Katie J.
Doores
,
Benhur
Lee
,
Thomas A.
Bowden
,
Vincent J.
Munster
Diamond Proposal Number(s):
[20223]
Abstract: Nipah virus (NiV) is a highly pathogenic paramyxovirus capable of causing severe respiratory and neurologic disease in humans. Currently, there are no licensed vaccines or therapeutics against NiV, underscoring the urgent need for the development of countermeasures. The NiV surface-displayed glycoproteins, NiV-G and NiV-F, mediate host cell attachment and fusion, respectively, and are heavily targeted by host antibodies. Here, we describe a vaccination-derived neutralizing monoclonal antibody, mAb92, that targets NiV-F. Structural characterization of the Fab region bound to NiV-F (NiV-F–Fab92) by cryo-electron microscopy analysis reveals an epitope in the DIII domain at the membrane distal apex of NiV-F, an established site of vulnerability on the NiV surface. Further, prophylactic treatment of hamsters with mAb92 offered complete protection from NiV disease, demonstrating beneficial activity of mAb92 in vivo. This work provides support for targeting NiV-F in the development of vaccines and therapeutics against NiV.
|
Sep 2024
|
|
Krios I-Titan Krios I at Diamond
|
Diamond Proposal Number(s):
[36390]
Open Access
Abstract: The yeast SWR1 complex catalyzes the exchange of histone H2A/H2B dimers in nucleosomes with Htz1/H2B dimers. We use cryoelectron microscopy to determine the structure of an enzyme-bound hexasome intermediate in the reaction pathway of histone exchange, in which an H2A/H2B dimer has been extracted from a nucleosome prior to the insertion of a dimer comprising Htz1/H2B. The structure reveals a key role for the Swc5 subunit in stabilizing the unwrapping of DNA from the histone core of the hexasome. By engineering a crosslink between an Htz1/H2B dimer and its chaperone protein Chz1, we show that this blocks histone exchange by SWR1 but allows the incoming chaperone-dimer complex to insert into the hexasome. We use this reagent to trap an SWR1/hexasome complex with an incoming Htz1/H2B dimer that shows how the reaction progresses to the next step. Taken together the structures reveal insights into the mechanism of histone exchange by SWR1 complex.
|
Sep 2024
|
|
Krios I-Titan Krios I at Diamond
|
Diamond Proposal Number(s):
[28576]
Open Access
Abstract: The cell division cycle 25 phosphatases CDC25A, B and C regulate cell cycle transitions by dephosphorylating residues in the conserved glycine-rich loop of CDKs to activate their activity. Here, we present the cryo-EM structure of CDK2-cyclin A in complex with CDC25A at 2.7 Å resolution, providing a detailed structural analysis of the overall complex architecture and key protein-protein interactions that underpin this 86 kDa complex. We further identify a CDC25A C-terminal helix that is critical for complex formation. Sequence conservation analysis suggests CDK1/2-cyclin A, CDK1-cyclin B and CDK2/3-cyclin E are suitable binding partners for CDC25A, whilst CDK4/6-cyclin D complexes appear unlikely substrates. A comparative structural analysis of CDK-containing complexes also confirms the functional importance of the conserved CDK1/2 GDSEID motif. This structure improves our understanding of the roles of CDC25 phosphatases in CDK regulation and may inform the development of CDC25-targeting anticancer strategies.
|
Aug 2024
|
|
Krios I-Titan Krios I at Diamond
|
Open Access
Abstract: Bacteriophage ΦKZ (phiKZ) is the founding member of a family of giant bacterial viruses. It has potential as a therapeutic as its host, Pseudomonas aeruginosa, kills tens of thousands of people worldwide each year. ΦKZ infection is independent of the host transcriptional apparatus; the virus forms a “nucleus”, producing a proteinaceous barrier around the ΦKZ genome that excludes the host immune systems. It expresses its own non-canonical multi-subunit non-virion RNA polymerase (nvRNAP), which is imported into its “nucleus” to transcribe viral genes. The ΦKZ nvRNAP is formed by four polypeptides representing homologues of the eubacterial β/β’ subunits, and a fifth that is likely to have evolved from an ancestral homologue to σ-factor. We have resolved the structure of the ΦKZ nvRNAP initiating transcription from its cognate promoter, p119L, including previously disordered domains and regions. Our results shed light on the similarities and differences between ΦKZ nvRNAP mechanisms of transcription and those of canonical eubacterial RNAPs and the related non-canonical nvRNAP of bacteriophage AR9.
|
Jul 2024
|
|