E02-JEM ARM 300CF
|
Matus
Krajnak
,
Jean-denis
Blazit
,
Alexander
Zintler
,
Robert
Eilhardt
,
Jon
Weiss
,
Doug
Cosart
,
Leopoldo
Molina-luna
,
Marcel
Tencé
,
Alexandre
Gloter
,
Christopher
Allen
,
Damien
Mcgrouther
|
Jul 2020
|
|
E02-JEM ARM 300CF
I14-Hard X-ray Nanoprobe
|
Tiarnan A. S.
Doherty
,
Andrew J.
Winchester
,
Stuart
Macpherson
,
Duncan N.
Johnstone
,
Vivek
Pareek
,
Elizabeth M.
Tennyson
,
Sofiia
Kosar
,
Felix U.
Kosasih
,
Miguel
Anaya
,
Mojtaba
Abdi-jalebi
,
Zahra
Andaji-garmaroudi
,
E. Laine
Wong
,
Julien
Madéo
,
Yu-hsien
Chiang
,
Ji-sang
Park
,
Young-kwang
Jung
,
Christopher E.
Petoukhoff
,
Giorgio
Divitini
,
Michael K. l.
Man
,
Caterina
Ducati
,
Aron
Walsh
,
Paul A.
Midgley
,
Keshav M.
Dani
,
Samuel D.
Stranks
Diamond Proposal Number(s):
[19023, 19793]
Abstract: Halide perovskite materials have promising performance characteristics for low-cost optoelectronic applications. Photovoltaic devices fabricated from perovskite absorbers have reached power conversion efficiencies above 25 per cent in single-junction devices and 28 per cent in tandem devices. This strong performance (albeit below the practical limits of about 30 per cent and 35 per cent, respectively) is surprising in thin films processed from solution at low-temperature, a method that generally produces abundant crystalline defects. Although point defects often induce only shallow electronic states in the perovskite bandgap that do not affect performance, perovskite devices still have many states deep within the bandgap that trap charge carriers and cause them to recombine non-radiatively. These deep trap states thus induce local variations in photoluminescence and limit the device performance. The origin and distribution of these trap states are unknown, but they have been associated with light-induced halide segregation in mixed-halide perovskite compositions and with local strain, both of which make devices less stable. Here we use photoemission electron microscopy to image the trap distribution in state-of-the-art halide perovskite films. Instead of a relatively uniform distribution within regions of poor photoluminescence efficiency, we observe discrete, nanoscale trap clusters. By correlating microscopy measurements with scanning electron analytical techniques, we find that these trap clusters appear at the interfaces between crystallographically and compositionally distinct entities. Finally, by generating time-resolved photoemission sequences of the photo-excited carrier trapping process, we reveal a hole-trapping character with the kinetics limited by diffusion of holes to the local trap clusters. Our approach shows that managing structure and composition on the nanoscale will be essential for optimal performance of halide perovskite devices.
|
Apr 2020
|
|
E02-JEM ARM 300CF
I14-Hard X-ray Nanoprobe
|
Abstract: Space weathering due to the bombardment of electrons and solar wind upon the exposed lunar surface shows as an apparent spectral darkening and reddening in ground-based and lunar-orbital observations. Space weathered rims have been observed on soil surface samples, returned by the Apollo landings, featuring amorphized material and nanophase Fe metal (npFe⁰) particles formed due to the implantation of solar wind H⁺ ions reducing the host grain mineral oxides to form metal. Oxidation of these Fe particles has also been shown, and a suggested correlation between oxidation and lunar soil maturity.In this study, we investigate Fe-redox changes in the space weathered rims of Apollo 17 lunar surface soil samples, using TEM and X-ray nanoprobe Fe-K XANES.
|
Sep 2020
|
|
E02-JEM ARM 300CF
I15-1-X-ray Pair Distribution Function (XPDF)
|
Diamond Proposal Number(s):
[20038, 20195]
Abstract: Metal-organic framework crystal-glass composites (MOF-CGCs) are materials in which a crystalline MOF is dispersed within a MOF glass. In this work, we explore the room temperature stabilization of the open-pore form of MIL-53(Al), usually observed at high-temperature, which occurs upon encapsulation within a ZIF-62(Zn) MOF glass matrix. A series of MOF-CGCs containing different loadings of MIL-53(Al) were synthesized and characterized using X-ray diffraction and nuclear magnetic resonance spectroscopy. An upper limit of MIL-53(Al) that can be stabilized in the composite was determined for the first time. The nanostructure of the composites was probed using pair distribution function analysis and scanning transmission electron microscopy. Notably, the distribution and integrity of the crystalline compo-nent in a sample series was determined, and these findings related to the MOF-CGC gas adsorption capacity in order to identify the optimal loading necessary for maximum CO2 sorption capacity.
|
Sep 2019
|
|
E02-JEM ARM 300CF
I15-1-X-ray Pair Distribution Function (XPDF)
|
Jingwei
Hou
,
Christopher W.
Ashling
,
Sean M.
Collins
,
Andraž
Krajnc
,
Chao
Zhou
,
Louis
Longley
,
Duncan N.
Johnstone
,
Philip
Chater
,
Shichun
Li
,
Marie-vanessa
Coulet
,
Philip L.
Llewellyn
,
François-xavier
Coudert
,
David
Keen
,
Paul A.
Midgley
,
Gregor
Mali
,
Vicki
Chen
,
Thomas D.
Bennett
Diamond Proposal Number(s):
[171151, 19130, 16983]
Open Access
Abstract: The majority of research into metal-organic frameworks (MOFs) focuses on their crystalline nature. Recent research has revealed solid-liquid transitions within the family, which we use here to create a class of functional, stable and porous composite materials. Described herein is the design, synthesis, and characterisation of MOF crystal-glass composites, formed by dispersing crystalline MOFs within a MOF-glass matrix. The coordinative bonding and chemical structure of a MIL-53 crystalline phase are preserved within the ZIF-62 glass matrix. Whilst separated phases, the interfacial interactions between the closely contacted microdomains improve the mechanical properties of the composite glass. More significantly, the high temperature open pore phase of MIL-53, which spontaneously transforms to a narrow pore upon cooling in the presence of water, is stabilised at room temperature in the crystal-glass composite. This leads to a significant improvement of CO2 adsorption capacity.
|
Jun 2019
|
|
E02-JEM ARM 300CF
I15-1-X-ray Pair Distribution Function (XPDF)
|
Shichun
Li
,
Shuwen
Yu
,
Sean M.
Collins
,
Duncan N.
Johnstone
,
Christopher W.
Ashling
,
Adam F.
Sapnik
,
Philip A.
Chater
,
Dean S.
Keeble
,
Lauren N.
Mchugh
,
Paul A.
Midgley
,
David A.
Keen
,
Thomas D.
Bennett
Diamond Proposal Number(s):
[20038, 22632, 21979]
Open Access
Abstract: Metal–organic framework crystal–glass composite (MOF CGC) materials consist of a crystalline MOF embedded within a MOF–glass matrix. In this work, a new synthetic route to these materials is demonstrated through the preparation of two ZIF-62 glass-based CGCs, one with crystalline ZIF-67 and the other with crystalline UiO-66. Previous attempts to form these CGCs failed due to the high processing temperatures involved in heating above the melting point of ZIF-62. Annealing of the ZIF-62 glass above the glass transition with each MOF however leads to stable CGC formation at lower temperatures. The reduction in processing temperatures will enable the formation of a greatly expanded range of MOF CGCs.
|
Sep 2020
|
|
E02-JEM ARM 300CF
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[14925, 10330, 16964]
Abstract: Fuel cells are a key new green technology that have applications in both transport and portable power generation. Carbon supported platinum (Pt) is used as an anode and cathode electrocatalyst in low-temperature fuel cells fuelled with hydrogen or low molecular weight alcohols. The cost of Pt and the limited world supply are significant barriers to the widespread use of these types of fuel cells. Compara-tively palladium has a three times higher abundance in the Earth’s crust. Here a facile, low temperature and scalable synthetic route to-wards 3D nanostructured palladium (Pd) employing electrochemical templating from inverse lyotropic lipid phases is presented. The obtained single diamond morphology Pd nanostructures exhibited excellent catalytic activity and stability towards methanol, ethanol and glycerol oxidation compared to commercial Pd black and the nanostructure was verified by small-angle X-ray scattering (SAXS), scanning tunneling electron microscopy (STEM) as well as by cyclic voltammetry (CV).
|
Oct 2018
|
|