E02-JEM ARM 300CF
|
Zupeng
Chen
,
Evgeniya
Vorobyeva
,
Sharon
Mitchell
,
Edvin
Fako
,
Manuel A.
Ortuño
,
Núria
López
,
Sean M.
Collins
,
Paul A.
Midgley
,
Sylvia
Richard
,
Gianvito
Vilé
,
Javier
Pérez-ramírez
Diamond Proposal Number(s):
[16967]
Abstract: Palladium-catalysed cross-coupling reactions, central tools in fine-chemical synthesis, predominantly employ soluble metal complexes despite recognized challenges with product purification and catalyst reusability. Attempts to tether these homogeneous catalysts on insoluble carriers have been thwarted by suboptimal stability, which leads to a progressively worsening performance due to metal leaching or clustering4. The alternative application of supported Pd nanoparticles has faced limitations because of insufficient activity under the mild conditions required to avoid thermal degradation of the substrates or products. Single-atom heterogeneous catalysts lie at the frontier. Here, we show that the Pd atoms anchored on exfoliated graphitic carbon nitride (Pd-ECN) capture the advantages of both worlds, as they comprise a solid catalyst that matches the high chemoselectivity and broad functional group tolerance of state-of-the-art homogeneous catalysts for Suzuki couplings, and also demonstrate a robust stability in flow. The adaptive coordination environment within the macroheterocycles of ECN facilitates each catalytic step. The findings illustrate the exciting opportunities presented by nanostructuring single atoms in solid hosts for catalytic processes that remain difficult to heterogenize.
|
Jun 2018
|
|
E02-JEM ARM 300CF
|
Diamond Proposal Number(s):
[16854]
Abstract: We reveal a self-limiting mechanism during the formation of a specific type of circular nanopore in monolayer WS2 that limits its diameter to sub-nm. A single W atom vacancy (triangular nanopore) is transformed into the self-limiting nanopore (SLNP) through the atomic restructuring of S atoms around the area, reducing the number of dangling bonds at the nanopore edge by shifting them further in-plane with W–W bonding instead. Bond rotations in WS2 help accommodate the electron beam induced atomic loss and ensure the stability of the SLNP. The SLNP shows significant improvement in diameter stability during electron beam irradiation compared to other triangular nanopores in WS2 that typically continue to expand in diameter during atom loss. The atomic structure of these SLNPs is studied using aberration-corrected scanning transmission electron microscopy with an in situ heating holder, revealing that the SLNPs are mostly formed at a temperature of ∼500 °C, which is a balance between thermally activated S vacancy diffusion and sufficient S vacancy density to initiate local atomic reconstruction. At higher temperatures (i.e., 1000 °C), S vacancies quickly migrate away into long line vacancies, resulting in low S vacancy density and rapidly expanding holes generated at the edges of the line vacancies. At room temperature, S vacancy migration is low and vacancy density is very high, which limits atomic reconstruction, and instead many small holes open up. These results provide insights into the factors that lead to uniform sized nanopores in the sub-nm range in transition-metal dichalcogenides.
|
Oct 2018
|
|
E02-JEM ARM 300CF
|
Diamond Proposal Number(s):
[17918]
Abstract: We report a method for quantitative phase recovery and simultaneous electron energy loss spectroscopy analysis using ptychographic reconstruction of a data set of “hollow” diffraction patterns. This has the potential for recovering both structural and chemical information at atomic resolution with a new generation of detectors.
|
Oct 2018
|
|
E02-JEM ARM 300CF
|
Diamond Proposal Number(s):
[19793]
Abstract: Materials with highly crystalline lattice structures and low defect concentrations have classically been considered essential for high-performance optoelectronic devices. However, the emergence of high-efficiency devices based on halide perovskites is provoking researchers to rethink this traditional picture, as the heterogeneity in several properties within these materials occurs on a series of length scales. Perovskites are typically fabricated crudely through simple processing techniques, which leads to large local fluctuations in defect density, lattice structure, chemistry and bandgap that appear on short length scales (<100 nm) and across long ranges (>10 μm). Despite these variable and complex non-uniformities, perovskites maintain exceptional device efficiencies and are, as of 2018, the best-performing polycrystalline thin-film solar cell material. In this Review, we highlight the multiple layers of heterogeneity ascertained using high-spatial-resolution methods that provide access to the relevant length scales. We discuss the impact that the optoelectronic variations have on halide perovskite devices, including the prospect that it is this very disorder that leads to their remarkable power-conversion efficiencies.
|
Jul 2019
|
|
E02-JEM ARM 300CF
|
Diamond Proposal Number(s):
[22549]
Abstract: Simultaneous imaging of individual low and high atomic number atoms using annular dark field scanning transmission electron microscopy (ADF-STEM) is often challenging due to substantial differences in their scattering cross sections. This often leads to contrast from only the high atomic number species when imaged using ADF-STEM such as the Mo and 2S sites in monolayer MoS2 crystals, without detection of lighter atoms such as C, O, or N. Here, we show that by capturing an array of convergent beam electron diffraction patterns using a 2D pixelated electron detector (2D-PED) in a 4D STEM geometry enables identification of individual low and high atomic number atoms in 2D materials by multicomponent imaging. We have used ptychographic phase reconstructions, combined with angular dependent ADF-STEM reconstructions, to image light elements at lateral (nanopores) and vertical interfaces (surface dopants) within 2D monolayer MoS2. Differential phase contrast imaging (Div(DPC)) using quadrant segmentation of the 2D pixelated direct electron detector data not only qualitatively matches the ptychographic phase reconstructions in both resolution and contrast but also offers the additional potential for real time display. Using 4D-STEM, we have identified surface adatoms on MoS2 monolayers and have separated atomic columns with similar total atomic number into their relative combinations of low and high atomic number elements. These results demonstrate the rich information present in the data obtained during 4D-STEM imaging of ultrathin 2D materials and the ability of this approach to extract unique insights beyond conventional imaging.
|
Aug 2019
|
|
E02-JEM ARM 300CF
|
Diamond Proposal Number(s):
[16854]
Abstract: High-energy irradiation of materials can lead to void formation due to the aggregation of vacancies, reducing the local stress in the system. Studying void formation and its interplay with vacancy clusters in bulk materials at the atomic level has been challenging due to the thick volume of 3D materials, which generally limits high-resolution transmission electron microscopy. The thin nature of 2D materials is ideal for studying fundamental material defects such as dislocations and crack tips and has potential to reveal void formation by vacancy aggregation in detail. Here, using atomic-resolution in situ transmission electron microscopy of 2D monolayer MoS2, we capture rapid thermal diffusion of S vacancies into ultralong (∼60 nm) 1D S vacancy channels that initiate void formation at high vacancy densities. Strong interactions are observed between the 1D channels and void growth, whereby Mo and S atoms are funneled back and forth between the void edge and the crystal surface to enable void enlargement. Preferential void growth up to 100 nm is shown to occur by rapid digestion of 1D S vacancy channels as they make contact. These results reveal the atomistic mechanisms behind void enlargement in 2D materials under intense high-energy irradiation at high temperatures and the existence of ultralong 1D vacancy channels. This knowledge may also help improve the understanding of void formation in other systems such as nuclear materials, where direct visualization is challenging due to 3D bulk volume.
|
Aug 2018
|
|
E02-JEM ARM 300CF
|
Ian
Maclaren
,
Magnus
Nord
,
Suzanne
Conner
,
Damien
Mcgrouther
,
Christopher S.
Allen
,
Mohsen
Danaie
,
Angus I.
Kirkland
,
Rantej
Bali
,
Gregor
Hlawacek
,
Jürgen
Lindner
,
Jürgen
Faßbender
Diamond Proposal Number(s):
[16952]
Abstract: Integrating fast readout direct electron detectors into the scanning transmission electron microscope
(STEM) is revolutionizing imaging. This paper provides a brief review of work in this area at Glasgow.
|
Aug 2018
|
|
E02-JEM ARM 300CF
|
Abstract: When secondary domains nucleate and grow on the surface of monolayer MoS2, they can extend across grain boundaries in the underlying monolayer MoS2 and form overlapping sections. We present an atomic level study of overlapping antiphase grain boundaries (GBs) in MoS2 monolayer-bilayers using aberration-corrected annular dark field scanning transmission electron microscopy. In particular we focus on the antiphase GB within a monolayer and track its propagation through an overlapping bilayer domain. We show that this leads to an atomically sharp interface between 2H and 3R interlayer stacking in the bilayer region. We have studied the micro-nanoscale “meandering” of the antiphase GB in MoS2, which shows a directional dependence on the density of 4 and 8 member ring defects, as well as sharp turning angles 90°–100° that are mediated by a special 8-member ring defect. Density functional theory has been used to explore the overlapping interlayer stacking around the antiphase GBs, confirming our experimental findings. These results show that overlapping secondary bilayer MoS2 domains cause atomic structure modification to underlying anti-phase GB sites to accommodate the van der Waals interactions.
|
Aug 2018
|
|
E02-JEM ARM 300CF
|
Abstract: We show how gadolinium (Gd)-based metallofullerene (Gd3N@C80) molecules can be used to create single adatoms and nanoclusters on a graphene surface. An in situ heating holder within an aberration-corrected scanning transmission electron microscope is used to track the adhesion of endohedral metallofullerenes (MFs) to the surface of graphene, followed by Gd metal ejection and diffusion across the surface. Heating to 900 °C is used to promote adatom migration and metal nanocluster formation, enabling direct imaging of the assembly of nanoclusters of Gd. We show that hydrogen can be used to reduce the temperature of MF fragmentation and metal ejection, enabling Gd nanocluster formation on graphene surfaces at temperatures as low as 300 °C. The process of MF fragmentation and metal ejection is captured in situ and reveals that after metal release, the C80 cage opens further and fuses with the surface monolayer carbon glass on graphene, creating a highly stable carbon layer for further Gd adatom adhesion. Small voids and defects (∼1 nm) in the surface carbon glass act as trapping sites for Gd atoms, leading to atomic self-assembly of 2D monolayer Gd clusters. These results show that MFs can adhere to graphene surfaces at temperatures well above their bulk sublimation point, indicating that the surface bound MFs have strong adhesion to dangling bonds on graphene surfaces. The ability to create dispersed single Gd adatoms and Gd nanoclusters on graphene may have impact in spintronics and magnetism.
|
Sep 2018
|
|
E02-JEM ARM 300CF
|
Abstract: It is shown that tilt grain boundaries (GBs) in bilayer 2D crystals of the transition metal dichalcogenide WS2 can be atomically sharp, where top and bottom layer GBs are located within sub‐nanometer distances of each other. This expands the current knowledge of GBs in 2D bilayer crystals, beyond the established large overlapping GB types typically formed in chemical vapor deposition growth, to now include atomically sharp dual bilayer GBs. By using atomic‐resolution annular dark‐field scanning transmission electron microscopy (ADF‐STEM) imaging, different atomic structures in the dual GBs are distinguished considering bilayers with a 3R (AB stacking)/2H (AA′ stacking) interface as well as bilayers with 2H/2H boundaries. An in situ heating holder is used in ADF‐STEM and the GBs are stable to at least 800 °C, with negligible thermally induced reconstructions observed. Normal dislocation cores are seen in one WS2 layer, but the second WS2 layer has different dislocation structures not seen in freestanding monolayers, which have metal‐rich clusters to accommodate the stacking mismatch of the 2H:3R interface. These results reveal the competition between maintaining van der Waals bilayer stacking uniformity and dislocation cores required to stitch tilted bilayer GBs together.
|
Aug 2019
|
|