E02-JEM ARM 300CF
|
Astrid
Weston
,
Yichao
Zou
,
Vladimir
Enaldiev
,
Alex
Summerfield
,
Nicholas
Clark
,
Viktor
Zólyomi
,
Abigail
Graham
,
Celal
Yelgel
,
Samuel
Magorrian
,
Mingwei
Zhou
,
Johanna
Zultak
,
David
Hopkinson
,
Alexei
Barinov
,
Thomas H.
Bointon
,
Andrey
Kretinin
,
Neil R.
Wilson
,
Peter H.
Beton
,
Vladimir I.
Fal’ko
,
Sarah J.
Haigh
,
Roman
Gorbachev
Diamond Proposal Number(s):
[19315, 21597]
Abstract: Van der Waals heterostructures form a unique class of layered artificial solids in which physical properties can be manipulated through controlled composition, order and relative rotation of adjacent atomic planes. Here we use atomic-resolution transmission electron microscopy to reveal the lattice reconstruction in twisted bilayers of the transition metal dichalcogenides, MoS2 and WS2. For twisted 3R bilayers, a tessellated pattern of mirror-reflected triangular 3R domains emerges, separated by a network of partial dislocations for twist angles θ < 2°. The electronic properties of these 3R domains, featuring layer-polarized conduction-band states caused by lack of both inversion and mirror symmetry, appear to be qualitatively different from those of 2H transition metal dichalcogenides. For twisted 2H bilayers, stable 2H domains dominate, with nuclei of a second metastable phase. This appears as a kagome-like pattern at θ ≈ 2°, transitioning at θ → 0 to a hexagonal array of screw dislocations separating large-area 2H domains. Tunnelling measurements show that such reconstruction creates strong piezoelectric textures, opening a new avenue for engineering of 2D material properties.
|
May 2020
|
|
E02-JEM ARM 300CF
|
Diamond Proposal Number(s):
[20431, 22317]
Abstract: Electron ptychography is a 4-D STEM phase-contrast imaging technique with applications to light-element and beam-sensitive materials. Although the electron dose (electrons incident per unit area on the sample) is the primary figure of merit for imaging beam-sensitive materials, it is also necessary to consider the contrast transfer properties of the imaging technique. Here, we explore the contrast transfer properties of electron ptychography. The contrast transfer of focused-probe, non-iterative electron ptychography using the single-side-band (SSB) method is demonstrated experimentally. The band-pass nature of the phase-contrast transfer function (PCTF) for SSB ptychography places strict limitations on the probe convergence semi-angles required to resolve specific sample features with high contrast. The PCTF of the extended ptychographic iterative engine (ePIE) is broader than that for SSB ptychography, although when both high and low spatial frequencies are transferred, band-pass filtering is required to remove image artefacts. Normalisation of the transfer function with respect to the noise level shows that the transfer window is increased while avoiding noise amplification. Avoiding algorithms containing deconvolution steps may also increase the dose-efficiency of ptychographic phase reconstructions.
|
Feb 2021
|
|
E02-JEM ARM 300CF
|
Diamond Proposal Number(s):
[19130, 20614]
Abstract: Cellulose is crystallized by plants and other organisms into fibrous nanocrystals. The mechanical properties of these nanofibers and the formation of helical superstructures with energy dissipating and adaptive optical properties depend on the ordering of polysaccharide chains within these nanocrystals, which is typically measured in bulk average. Direct measurement of the local polysaccharide chain arrangement has been elusive. In this study, we use the emerging technique of scanning electron diffraction to probe the packing of polysaccharide chains across cellulose nanofibers and to reveal local ordering of the chains in twisting sections of the nanofibers. We then use atomic force microscopy to shed light on the size dependence of the inherent driving force for cellulose nanofiber twisting. The direct measurement of crystalline twisted regions in cellulose nanofibers has important implications for understanding single-cellulose-fibril properties that influence the interactions between cellulose nanocrystals in dense assemblies. This understanding may enable cellulose extraction and separation processes to be tailored and optimized.
|
Jan 2021
|
|
E02-JEM ARM 300CF
|
Diamond Proposal Number(s):
[23504]
Abstract: The emergence of nickel single-atoms on nitrogen-doped carbons as high-performance catalysts amenable to rationalization due to their well-defined structure could lead to applicable technologies for the electrocatalytic CO2 reduction reaction (eCO2RR). However, real materials are unlikely to display a uniform site structure, which limits the scope of current efforts focused on idealized models for future implementation. Here, we prepare distinct nickel entities (single atoms or nanoparticles) on nitrogen-doped carbons and evaluate them in eCO2RR. Single atoms demonstrate a characteristic high selectivity to CO. However, this is not altered by the presence of metal nanoparticles formed upon reducing the nitrogen content of the carrier. In contrast, nanoparticles incorporated via a colloidal route promote the parasitic hydrogen evolution reaction. In these systems, the CO selectivity evolves upon repeated exposure to potential, reaching values comparable to single atoms. By introducing CO stripping voltammetry as a characterization tool for this class of materials, we identify a decreased metallic surface, suggesting that the nanoparticle surface is altered by CO. The findings highlight the critical role of dynamic effects in catalyst design for eCO2RR.
|
Feb 2020
|
|
E02-JEM ARM 300CF
|
Diamond Proposal Number(s):
[20195, 21979, 20198]
Abstract: Defect engineering can enhance key properties of metal-organic frameworks (MOFs). Tailoring the distribution of de-fects, for example in correlated nanodomains, requires characterization across length scales. However, a critical na-noscale characterization gap has emerged between the bulk diffraction techniques used to detect defect nanodomains and the sub-nanometer imaging used to observe individual defects. Here, we demonstrate that the emerging technique of scanning electron diffraction (SED) can bridge this gap uniquely enabling both nanoscale crystallographic analysis and the low-dose formation of multiple diffraction contrast images for defect analysis in MOFs. We directly image defect nanodomains in the MOF UiO-66(Hf) over an area of ca. 1 000 nm and with a spatial resolution ca. 5 nm to reveal domain morphology and distribution. Based on these observations, we suggest possible crystal growth processes underpinning synthetic control of defect nanodomains. We also identify likely dislocations and small angle grain boundaries, illustrating that SED could be a key technique in developing the potential for engineering the distribution of defects, or “microstruc-ture”, in functional MOF design.
|
Jul 2020
|
|
E02-JEM ARM 300CF
|
James
King
,
Linda
Zhang
,
Szymon
Doszczeczko
,
Olga
Sambalova
,
Hui
Luo
,
Fadli
Rohman
,
Omotoyosi
Phillips
,
Andreas
Borgschulte
,
Michael
Hirscher
,
Matthew
Addicoat
,
Petra Agota
Szilagyi
Diamond Proposal Number(s):
[20116]
Abstract: We report on the development and verification of an enhanced computational model capable of robust predictions and yielding a single descriptor to the successful embedding of guest nanoclusters into the pores of functionalised metal–organic frameworks. Using the predictions of this model, we have been able to embed Pd nanoclusters in the pores of Br-UiO-66 and show that the embedding of Pd nanoclusters in both (OH)2-UiO-66 and (Cl)2-UiO-66 is not successful. Also, using various independent methods, we identified the strong host–guest interactions that anchor the guest nanoclusters inside the Br-UiO-66 framework which result in the surface modification of said nanoclusters. We demonstrated that the level of this surface modification is a direct function of the framework functional groups. This new approach for the rational design of nanocluster–metal–organic framework systems, and a demonstrated tool box for their characterisation, will promote the exploitation of surface modification of nanoclusters via their embedding into functionalised metal–organic framework pores.
|
Feb 2020
|
|
E02-JEM ARM 300CF
|
Diamond Proposal Number(s):
[19315, 21597]
Abstract: Suspended specimens of 2D crystals and their heterostructures are required for a range of studies including transmission electron microscopy (TEM), optical transmission experiments and nanomechanical testing. However, investigating the properties of laterally small 2D crystal specimens, including twisted bilayers and air sensitive materials, has been held back by the difficulty of fabricating the necessary clean suspended samples. Here we present a scalable solution which allows clean free-standing specimens to be realized with 100% yield by dry-stamping atomically thin 2D stacks onto a specially developed adhesion-enhanced support grid. Using this new capability, we demonstrate atomic resolution imaging of defect structures in atomically thin CrBr3, a novel magnetic material which degrades in ambient conditions.
|
Aug 2020
|
|
E02-JEM ARM 300CF
|
Diamond Proposal Number(s):
[21980]
Abstract: Advances in the production of two-dimensional (2D) materials such as graphene and MoS2 during the past two decades have spurred the search for other van der Waals materials with distinct functional properties. However, reducing the dimensionality of bulk van der Waals materials can lead to structural rearrangement and chemical degradation, especially in the presence of air. These challenges have slowed the progress of the discovery and analysis of chemically diverse 2D materials. Here, we provide a case study on the shear exfoliation of a class of wide band gap van der Waals materials termed II–VI layered hybrids (II–VI LHs) and show how reducing their dimension influences their structural and chemical stabilities. ZnSe(butylamine) and ZnSe(octylamine) are exfoliated, yielding shear-thinned material whose resistance toward degradation via oxidation is studied in depth by a variety of macro- and microscopic characterization techniques. Mechanical energy input, solvent–ligand interaction, and exposure to ambient conditions all play important roles in the stability of these materials. Our findings suggest that moderately coordinating alkylamine layers stabilize 2D materials that would otherwise degrade during exfoliation and exposure to air.
|
Mar 2020
|
|
E02-JEM ARM 300CF
|
Diamond Proposal Number(s):
[20431, 22317]
Abstract: We report the application of focused probe ptychography using binary 4D datasets obtained using scanning transmission electron microscopy (STEM). Modern fast pixelated detectors have enabled imaging of individual convergent beam electron diffraction patterns in a STEM raster scan at frame rates in the range of 1000–8000 Hz using conventional counting modes. Changing the bit depth of a counting detector, such that only values of 0 or 1 can be recorded at each pixel, allows one to decrease the dwell time and increase the frame rate to 12.5 kHz, reducing the electron exposure of the sample for a given beam current. Atomically resolved phase contrast of an aluminosilicate zeolite (ZSM-5) is observed from sparse diffraction patterns with isolated individual electrons, demonstrating the potential of binary ptychography as a low-dose 4D STEM technique.
|
Mar 2020
|
|
E02-JEM ARM 300CF
|
Colum
O'leary
,
Emanuela
Liberti
,
Gerardo
Martinez
,
Christopher
Allen
,
Chen
Huang
,
Mathias
Rothmann
,
Hui
Luo
,
Judy
Kim
,
Laura
Herz
,
Hazel
Assender
,
Lewys
Jones
,
Angus
Kirkland
,
Peter
Nellist
Diamond Proposal Number(s):
[20431, 22317]
|
Jul 2020
|
|