B21-High Throughput SAXS
Krios III-Titan Krios III at Diamond
|
Amaia
González-Magaña
,
Igor
Tascon
,
Jon
Altuna-Alvarez
,
María
Queralt-Martín
,
Jake
Colautti
,
Carmen
Velázquez
,
Maialen
Zabala
,
Jessica
Rojas-Palomino
,
Marité
Cárdenas
,
Antonio
Alcaraz
,
John C.
Whitney
,
Iban
Ubarretxena-Belandia
,
David
Albesa-Jove
Diamond Proposal Number(s):
[23872, 28248]
Open Access
Abstract: Bacterial competition is a significant driver of toxin polymorphism, which allows continual compensatory evolution between toxins and the resistance developed to overcome their activity. Bacterial Rearrangement hot spot (Rhs) proteins represent a widespread example of toxin polymorphism. Here, we present the 2.45 Å cryo-electron microscopy structure of Tse5, an Rhs protein central to Pseudomonas aeruginosa type VI secretion system-mediated bacterial competition. This structural insight, coupled with an extensive array of biophysical and genetic investigations, unravels the multifaceted functional mechanisms of Tse5. The data suggest that interfacial Tse5-membrane binding delivers its encapsulated pore-forming toxin fragment to the target bacterial membrane, where it assembles pores that cause cell depolarisation and, ultimately, bacterial death.
|
Dec 2023
|
|
B24-Cryo Soft X-ray Tomography
Krios III-Titan Krios III at Diamond
|
Diamond Proposal Number(s):
[26538, 21005, 27932]
Abstract: Aphthovirus is a genus of the family Picornaviridae which includes Foot-and- mouth-disease virus (FMDV) and Equine rhinitis A virus (ERAV). FMDV is a highly contagious pathogen infecting cloven-hoofed animals and is hence economically important. FMDV replication takes place in the cytoplasm and induces massive rearrangement of the host cell membranes to facilitate virus replication. Rearranged membranes form structures providing the site of viral genome replication known as the replication organelle (RO). The understanding of the RO, viral proteins and site of virus assembly is not well established. This project applies various microscopy approaches to investigate details of aphthovirus replication in cells.
FMDV 3A protein is known to play a key role in viral replication machinery. We generated recombinant viruses of FMDV with various tags fused to this protein, subsequently allowing 3A to be detected in confocal microscopy. We developed a split-GFP system to study the dynamics of 3A protein in vitro. We showed that 3A signals appeared contiguous to the Golgi membrane signals suggesting that it potentially serve as a main source of membrane associated with viral replication. This approach was taken with the aim of facilitating the development of a correlative light electron microscopy (CLEM) system to unravel the localisation of virus proteins and their link to RO in cells. ERAV was used as a surrogate model to study FMDV replication in a lower containment laboratory using cryo-electron
vi
tomography (cryo-ET). Virus particles were observed associated with membrane structures with single membrane vesicles being more predominant than double membrane vesicles in infected cells. By sub-tomogram averaging, we reconstructed 3-dimensional (3D) models of intracellular ERAV full and empty particles which were compared with structures obtained for the virus purified from tissue culture and crystallized. Additional density was identified in the ERAV empty particles potentially corresponding to RNA contact sites inside the capsid.
|
Aug 2023
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
Krios I-Titan Krios I at Diamond
Krios III-Titan Krios III at Diamond
|
Diamond Proposal Number(s):
[19432, 18659, 12579]
Open Access
Abstract: Plants, algae, and cyanobacteria fix carbon dioxide to organic carbon with the Calvin–Benson (CB) cycle. Phosphoribulokinase (PRK) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) are essential CB-cycle enzymes that control substrate availability for the carboxylation enzyme Rubisco. PRK consumes ATP to produce the Rubisco substrate ribulose bisphosphate (RuBP). GAPDH catalyzes the reduction step of the CB cycle with NADPH to produce the sugar glyceraldehyde 3-phosphate (GAP), which is used for regeneration of RuBP and is the main exit point of the cycle. GAPDH and PRK are coregulated by the redox state of a conditionally disordered protein CP12, which forms a ternary complex with both enzymes. However, the structural basis of CB-cycle regulation by CP12 is unknown. Here, we show how CP12 modulates the activity of both GAPDH and PRK. Using thermophilic cyanobacterial homologs, we solve crystal structures of GAPDH with different cofactors and CP12 bound, and the ternary GAPDH-CP12-PRK complex by electron cryo-microscopy, we reveal that formation of the N-terminal disulfide preorders CP12 prior to binding the PRK active site, which is resolved in complex with CP12. We find that CP12 binding to GAPDH influences substrate accessibility of all GAPDH active sites in the binary and ternary inhibited complexes. Our structural and biochemical data explain how CP12 integrates responses from both redox state and nicotinamide dinucleotide availability to regulate carbon fixation.
|
Sep 2019
|
|
I03-Macromolecular Crystallography
I23-Long wavelength MX
Krios III-Titan Krios III at Diamond
|
Diamond Proposal Number(s):
[21426]
Open Access
Abstract: Approximately 25% of eukaryotic genes code for integral membrane proteins that are assembled at the endoplasmic reticulum. An abundant and widely conserved multi-protein complex termed EMC has been implicated in membrane protein biogenesis, but its mechanism of action is poorly understood. Here, we define the composition and architecture of human EMC using biochemical assays, crystallography of individual subunits, site-specific photocrosslinking, and cryo-EM reconstruction. Our results suggest that EMC's cytosolic domain contains a large, moderately hydrophobic vestibule that can bind a substrate's transmembrane domain (TMD). The cytosolic vestibule leads into a lumenally-sealed, lipid-exposed intramembrane groove large enough to accommodate a single substrate TMD. A gap between the cytosolic vestibule and intramembrane groove provides a potential path for substrate egress from EMC. These findings suggest how EMC facilitates energy-independent membrane insertion of TMDs, explain why only short lumenal domains are translocated by EMC, and constrain models of EMC's proposed chaperone function.
|
May 2020
|
|
I04-Macromolecular Crystallography
I23-Long wavelength MX
I24-Microfocus Macromolecular Crystallography
Krios III-Titan Krios III at Diamond
|
Paola
Lanzoni-Mangutchi
,
Oishik
Banerji
,
Jason
Wilson
,
Anna
Barwinska-Sendra
,
Joseph A.
Kirk
,
Filipa
Vaz
,
Shauna
O’beirne
,
Arnaud
Basle
,
Kamel
El Omari
,
Armin
Wagner
,
Neil F.
Fairweather
,
Gillian R.
Douce
,
Per A.
Bullough
,
Robert P.
Fagan
,
Paula
Salgado
Diamond Proposal Number(s):
[15523, 18598, 19832]
Open Access
Abstract: Many bacteria and archaea possess a two-dimensional protein array, or S-layer, that covers the cell surface and plays crucial roles in cell physiology. Here, we report the crystal structure of SlpA, the main S-layer protein of the bacterial pathogen Clostridioides difficile, and use electron microscopy to study S-layer organisation and assembly. The SlpA crystal lattice mimics S-layer assembly in the cell, through tiling of triangular prisms above the cell wall, interlocked by distinct ridges facing the environment. Strikingly, the array is very compact, with pores of only ~10 Å in diameter, compared to other S-layers (30–100 Å). The surface-exposed flexible ridges are partially dispensable for overall structure and assembly, although a mutant lacking this region becomes susceptible to lysozyme, an important molecule in host defence. Thus, our work gives insights into S-layer organisation and provides a basis for development of C. difficile-specific therapeutics.
|
Feb 2022
|
|
I04-Macromolecular Crystallography
Krios I-Titan Krios I at Diamond
Krios III-Titan Krios III at Diamond
|
Diamond Proposal Number(s):
[21426, 23268]
Open Access
Abstract: Transcription termination by RNA polymerase II (RNA Pol II) is linked to RNA 3′ end processing by the cleavage and polyadenylation factor (CPF or CPSF). CPF contains endonuclease, poly(A) polymerase, and protein phosphatase activities, which cleave and polyadenylate pre-mRNAs and dephosphorylate RNA Pol II to control transcription. Exactly how the RNA 3′ end processing machinery is coupled to transcription remains unclear. Here, we combine in vitro reconstitution, structural studies, and genome-wide analyses to show that yeast CPF physically and functionally interacts with RNA Pol II. Surprisingly, CPF-mediated dephosphorylation promotes the formation of an RNA Pol II stalk-to-stalk homodimer in vitro. This dimer is compatible with transcription but not with the binding of transcription elongation factors. Disruption of the dimerization interface in cells causes transcription defects, including altered RNA Pol II abundance on protein-coding genes, tRNA genes, and intergenic regions. We hypothesize that RNA Pol II dimerization may provide a mechanistic basis for the allosteric model of transcription termination.
|
Dec 2023
|
|
Krios I-Titan Krios I at Diamond
Krios II-Titan Krios II at Diamond
Krios III-Titan Krios III at Diamond
|
Luiza
Mendonca
,
Dapeng
Sun
,
Jiying
Ning
,
Jiwei
Liu
,
Abhay
Kotecha
,
Mateusz
Olek
,
Thomas
Frosio
,
Xiaofeng
Fu
,
Benjamin A.
Himes
,
Alex B.
Kleinpeter
,
Eric O.
Freed
,
Jing
Zhou
,
Christopher
Aiken
,
Peijun
Zhang
Diamond Proposal Number(s):
[18477, 21005, 21004]
Open Access
Abstract: Gag is the HIV structural precursor protein which is cleaved by viral protease to produce mature infectious viruses. Gag is a polyprotein composed of MA (matrix), CA (capsid), SP1, NC (nucleocapsid), SP2 and p6 domains. SP1, together with the last eight residues of CA, have been hypothesized to form a six-helix bundle responsible for the higher-order multimerization of Gag necessary for HIV particle assembly. However, the structure of the complete six-helix bundle has been elusive. Here, we determined the structures of both Gag in vitro assemblies and Gag viral-like particles (VLPs) to 4.2 Å and 4.5 Å resolutions using cryo-electron tomography and subtomogram averaging by emClarity. A single amino acid mutation (T8I) in SP1 stabilizes the six-helix bundle, allowing to discern the entire CA-SP1 helix connecting to the NC domain. These structures provide a blueprint for future development of small molecule inhibitors that can lock SP1 in a stable helical conformation, interfere with virus maturation, and thus block HIV-1 infection.
|
Apr 2021
|
|
Krios I-Titan Krios I at Diamond
Krios II-Titan Krios II at Diamond
Krios III-Titan Krios III at Diamond
|
Nisha
Pillay
,
Laura
Mariotti
,
Mariola
Zaleska
,
Oviya
Inian
,
Matthew
Jessop
,
Sam
Hibbs
,
Ambroise
Desfosses
,
Paul C. R.
Hopkins
,
Catherine M.
Templeton
,
Fabienne
Beuron
,
Edward P.
Morris
,
Sebastian
Guettler
Diamond Proposal Number(s):
[28549, 15624, 16822, 16023, 21809]
Open Access
Abstract: The poly-ADP-ribosyltransferase tankyrase (TNKS, TNKS2) controls a wide range of disease-relevant cellular processes, including WNT–β-catenin signalling, telomere length maintenance, Hippo signalling, DNA damage repair and glucose homeostasis1,2. This has incentivized the development of tankyrase inhibitors. Notwithstanding, our knowledge of the mechanisms that control tankyrase activity has remained limited. Both catalytic and non-catalytic functions of tankyrase depend on its filamentous polymerization3,4,5. Here we report the cryo-electron microscopy reconstruction of a filament formed by a minimal active unit of tankyrase, comprising the polymerizing sterile alpha motif (SAM) domain and its adjacent catalytic domain. The SAM domain forms a novel antiparallel double helix, positioning the protruding catalytic domains for recurring head-to-head and tail-to-tail interactions. The head interactions are highly conserved among tankyrases and induce an allosteric switch in the active site within the catalytic domain to promote catalysis. Although the tail interactions have a limited effect on catalysis, they are essential to tankyrase function in WNT–β-catenin signalling. This work reveals a novel SAM domain polymerization mode, illustrates how supramolecular assembly controls catalytic and non-catalytic functions, provides important structural insights into the regulation of a non-DNA-dependent poly-ADP-ribosyltransferase and will guide future efforts to modulate tankyrase and decipher its contribution to disease mechanisms.
|
Nov 2022
|
|
Krios I-Titan Krios I at Diamond
Krios II-Titan Krios II at Diamond
Krios III-Titan Krios III at Diamond
|
Diamond Proposal Number(s):
[28549, 15624, 16822, 16023, 21809]
Abstract: Tankyrase is an important protein that regulates a wide range of processes relevant to cancer and other conditions, such as diabetes, neurodegeneration and fibrosis. It supports 'Wnt signalling', essential for cell division and development and maintaining stem cells. Tankyrase also controls other cell functions critical to cancer, including the maintenance of telomeres at the end of chromosomes. Therefore, tankyrase has received substantial attention as a potential drug target.
|
May 2024
|
|
Krios I-Titan Krios I at Diamond
Krios II-Titan Krios II at Diamond
Krios III-Titan Krios III at Diamond
Krios IV-Titan Krios IV at Diamond
|
Diamond Proposal Number(s):
[13954, 17057, 16422, 18075]
Open Access
Abstract: The structure of the dimeric ATP synthase from bovine mitochondria determined in three rotational states by electron cryo-microscopy provides evidence that the proton uptake from the mitochondrial matrix via the proton inlet half channel proceeds via a Grotthus mechanism, and a similar mechanism may operate in the exit half channel. The structure has given information about the architecture and mechanical constitution and properties of the peripheral stalk, part of the membrane extrinsic region of the stator, and how the action of the peripheral stalk damps the side-to-side rocking motions that occur in the enzyme complex during the catalytic cycle. It also describes wedge structures in the membrane domains of each monomer, where the skeleton of each wedge is provided by three α-helices in the membrane domains of the b-subunit to which the supernumerary subunits e, f, and g and the membrane domain of subunit A6L are bound. Protein voids in the wedge are filled by three specifically bound cardiolipin molecules and two other phospholipids. The external surfaces of the wedges link the monomeric complexes together into the dimeric structures and provide a pivot to allow the monomer–monomer interfaces to change during catalysis and to accommodate other changes not related directly to catalysis in the monomer–monomer interface that occur in mitochondrial cristae. The structure of the bovine dimer also demonstrates that the structures of dimeric ATP synthases in a tetrameric porcine enzyme have been seriously misinterpreted in the membrane domains.
|
Sep 2020
|
|