Krios III-Titan Krios III at Diamond
|
Abstract: The L-type neutral amino acid transporter 1 (LAT1/SLC7A5) is one of 7 light chains that can form a heteromeric amino acid transporter (HAT) with the type II single pass glycoprotein CD98hc (SLC3A2). LAT1-CD98hc transports essential amino acids and some of their catabolites, such as tryptophan, methionine and kynurenine, across the plasma membranes of normal and cancer cells. It is also a drug transporter, carrying drugs such as gabapentin and L-DOPA across the blood brain barrier. The atypical heterodimeric nature of LAT1-CD98hc and its role in disease and drug delivery, motivate the structural characterisation of the HAT. Sequence analysis revealed two putative cholesterol binding motifs conserved between dDAT and LAT1 as well as 32 putative CRAC/CARC motifs. The crystal structures of various bacterial homologues of LAT1 were used for structure prediction, in order to visualise these putative cholesterol binding motifs and assess their plausibility. Here is presented the first binding mode analysis of ligands to the inward facing occluded conformation of LAT1. Substrates had lower predicted free energies of binding to the inward facing conformation compared to the outward open. The putative gating residue F252 may play a role in binding to aromatic substrates via p-p stacking in the outward open conformation and with all substrates via p-cation bonding with their amino termini in the inward facing occluded conformation. Based on the docking analysis, inhibitors of LAT1, JPH203 and SKN203 are predicted to transportable substrates of the transporter and KMH233 a non-transportable competitive inhibitor with a unique binding mode. LAT1 was overexpressed in HEK293 cells and co-purified with CD98hc to a sufficient biochemical homogeneity for structural characterisation. The role of cholesterol hemisuccinate in stabilizing detergent solubilized LAT1-CD98hc was established. Detergent solubilized and purified LAT1-CD98hc was subject to structural analysis by single particle electron cryo-microscopy to a resolution of 12 Å. Multibody 3D auto-refinement and principal component analysis revealed flexibility and limited interaction between CD98hc ectodomain and LAT1, contrary to predictions based on homology to LAT2-CD98hc. Docking of CD98hc allowed for visualisation and generation of molecular movies of the structural dynamics of LAT1- CD98hc ectodomain, based on these the ectodomain of CD98hc seems tethered to LAT1 via the inter-subunit disulphide bond and interaction between their transmembrane domains.
|
Feb 2019
|
|
Krios II-Titan Krios II at Diamond
Krios III-Titan Krios III at Diamond
|
Diamond Proposal Number(s):
[19865]
Open Access
Abstract: CRISPR and associated Cas proteins function as an adaptive immune system in prokaryotes to combat bacteriophage infection. During the immunization step, new spacers are acquired by the CRISPR machinery, but the molecular mechanism of spacer capture remains enigmatic. We show that the Cas9, Cas1, Cas2, and Csn2 proteins of a Streptococcus thermophilus type II-A CRISPR-Cas system form a complex and provide cryoelectron microscopy (cryo-EM) structures of three different assemblies. The predominant form, with the stoichiometry Cas18-Cas24-Csn28, referred to as monomer, contains ∼30 bp duplex DNA bound along a central channel. A minor species, termed a dimer, comprises two monomers that sandwich a further eight Cas1 and four Cas2 subunits and contains two DNA ∼30-bp duplexes within the channel. A filamentous form also comprises Cas18-Cas24-Csn28 units (typically 2–6) but with a different Cas1-Cas2 interface between them and a continuous DNA duplex running along a central channel.
|
May 2019
|
|
Krios III-Titan Krios III at Diamond
|
Diamond Proposal Number(s):
[15262]
Open Access
Abstract: Solute carriers are a large class of transporters that play key roles in normal and disease physiology. Among the solute carriers, heteromeric amino-acid transporters (HATs) are unique in their quaternary structure. LAT1–CD98hc, a HAT, transports essential amino acids and drugs across the blood–brain barrier and into cancer cells. It is therefore an important target both biologically and therapeutically. During the course of this work, cryo-EM structures of LAT1–CD98hc in the inward-facing conformation and in either the substrate-bound or apo states were reported to 3.3–3.5 Å resolution [Yan et al. (2019), Nature (London), 568, 127–130]. Here, these structures are analyzed together with our lower resolution cryo-EM structure, and multibody 3D auto-refinement against single-particle cryo-EM data was used to characterize the dynamics of the interaction of CD98hc and LAT1. It is shown that the CD98hc ectodomain and the LAT1 extracellular surface share no substantial interface. This allows the CD98hc ectodomain to have a high degree of movement within the extracellular space. The functional implications of these aspects are discussed together with the structure determination.
|
Jul 2019
|
|
Krios III-Titan Krios III at Diamond
|
Diamond Proposal Number(s):
[17434]
Open Access
Abstract: Dyneins are motor proteins responsible for transport in the cytoplasm and the beating of axonemes in cilia and flagella. They bind and release microtubules via a compact microtubule-binding domain (MTBD) at the end of a coiled-coil stalk. We address how cytoplasmic and axonemal dynein MTBDs bind microtubules at near atomic resolution. We decorated microtubules with MTBDs of cytoplasmic dynein-1 and axonemal dynein DNAH7 and determined their cryo-EM structures using helical Relion. The majority of the MTBD is rigid upon binding, with the transition to the high-affinity state controlled by the movement of a single helix at the MTBD interface. DNAH7 contains an 18-residue insertion, found in many axonemal dyneins, that contacts the adjacent protofilament. Unexpectedly, we observe that DNAH7, but not dynein-1, induces large distortions in the microtubule cross-sectional curvature. This raises the possibility that dynein coordination in axonemes is mediated via conformational changes in the microtubule.
|
Jul 2019
|
|
Krios II-Titan Krios II at Diamond
Krios III-Titan Krios III at Diamond
Krios IV-Titan Krios IV at Diamond
|
Jianxiong
Xiao
,
Mengjie
Liu
,
Yilun
Qi
,
Yuriy
Chaban
,
Chao
Gao
,
Beiqing
Pan
,
Yuan
Tian
,
Zishuo
Yu
,
Jie
Li
,
Peijun
Zhang
,
Yanhui
Xu
Diamond Proposal Number(s):
[21004]
Abstract: Requested microscope - using Krios I for now.
|
Jul 2019
|
|
Krios II-Titan Krios II at Diamond
Krios III-Titan Krios III at Diamond
|
Diamond Proposal Number(s):
[17434]
Open Access
Abstract: The anaphase-promoting complex/cyclosome (APC/C) orchestrates cell cycle progression by controlling the temporal degradation of specific cell cycle regulators. Although cyclin A2 and cyclin B1 are both targeted for degradation by the APC/C, during the spindle assembly checkpoint (SAC), the mitotic checkpoint complex (MCC) represses APC/C's activity towards cyclin B1, but not cyclin A2. Through structural, biochemical and in vivo analysis, we identify a non-canonical D box (D2) that is critical for cyclin A2 ubiquitination in vitro and degradation in vivo. During the SAC, cyclin A2 is ubiquitinated by the repressed APC/C-MCC, mediated by the cooperative engagement of its KEN and D2 boxes, ABBA motif, and the cofactor Cks. Once the SAC is satisfied, cyclin A2 binds APC/C-Cdc20 through two mutually exclusive binding modes, resulting in differential ubiquitination efficiency. Our findings reveal that a single substrate can engage an E3 ligase through multiple binding modes, affecting its degradation timing and efficiency.
|
Aug 2019
|
|
Krios I-Titan Krios I at Diamond
Krios II-Titan Krios II at Diamond
Krios III-Titan Krios III at Diamond
Krios IV-Titan Krios IV at Diamond
Krios V-Titan Krios V at Diamond
|
Diamond Proposal Number(s):
[14704]
Abstract: Dynein-2 assembles with polymeric intraflagellar transport (IFT) trains to form a transport machinery that is crucial for cilia biogenesis and signaling. Here we recombinantly expressed the ~1.4-MDa human dynein-2 complex and solved its cryo-EM structure to near-atomic resolution. The two identical copies of the dynein-2 heavy chain are contorted into different conformations by a WDR60−WDR34 heterodimer and a block of two RB and six LC8 light chains. One heavy chain is steered into a zig-zag conformation, which matches the periodicity of the anterograde IFT-B train. Contacts between adjacent dyneins along the train indicate a cooperative mode of assembly. Removal of the WDR60−WDR34−light chain subcomplex renders dynein-2 monomeric and relieves autoinhibition of its motility. Our results converge on a model in which an unusual stoichiometry of non-motor subunits controls dynein-2 assembly, asymmetry, and activity, giving mechanistic insight into the interaction of dynein-2 with IFT trains and the origin of diverse functions in the dynein family.
|
Aug 2019
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
Krios I-Titan Krios I at Diamond
Krios III-Titan Krios III at Diamond
|
Diamond Proposal Number(s):
[19432, 18659, 12579]
Open Access
Abstract: Plants, algae, and cyanobacteria fix carbon dioxide to organic carbon with the Calvin–Benson (CB) cycle. Phosphoribulokinase (PRK) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) are essential CB-cycle enzymes that control substrate availability for the carboxylation enzyme Rubisco. PRK consumes ATP to produce the Rubisco substrate ribulose bisphosphate (RuBP). GAPDH catalyzes the reduction step of the CB cycle with NADPH to produce the sugar glyceraldehyde 3-phosphate (GAP), which is used for regeneration of RuBP and is the main exit point of the cycle. GAPDH and PRK are coregulated by the redox state of a conditionally disordered protein CP12, which forms a ternary complex with both enzymes. However, the structural basis of CB-cycle regulation by CP12 is unknown. Here, we show how CP12 modulates the activity of both GAPDH and PRK. Using thermophilic cyanobacterial homologs, we solve crystal structures of GAPDH with different cofactors and CP12 bound, and the ternary GAPDH-CP12-PRK complex by electron cryo-microscopy, we reveal that formation of the N-terminal disulfide preorders CP12 prior to binding the PRK active site, which is resolved in complex with CP12. We find that CP12 binding to GAPDH influences substrate accessibility of all GAPDH active sites in the binary and ternary inhibited complexes. Our structural and biochemical data explain how CP12 integrates responses from both redox state and nicotinamide dinucleotide availability to regulate carbon fixation.
|
Sep 2019
|
|
Krios I-Titan Krios I at Diamond
Krios III-Titan Krios III at Diamond
Krios V-Titan Krios V at Diamond
|
Diamond Proposal Number(s):
[13262, 13708, 17434]
Open Access
Abstract: In eukaryotes, accurate chromosome segregation in mitosis and meiosis maintains genome stability and prevents aneuploidy. Kinetochores are large protein complexes that, by assembling onto specialized Cenp-A nucleosomes1,2, function to connect centromeric chromatin to microtubules of the mitotic spindle3,4. Whereas the centromeres of vertebrate chromosomes comprise millions of DNA base pairs and attach to multiple microtubules, the simple point centromeres of budding yeast are connected to individual microtubules5,6. All 16 budding yeast chromosomes assemble complete kinetochores using a single Cenp-A nucleosome (Cenp-ANuc), each of which is perfectly centred on its cognate centromere7-9. The inner and outer kinetochore modules are responsible for interacting with centromeric chromatin and microtubules, respectively. Here we describe the cryo-electron microscopy structure of the Saccharomyces cerevisiae inner kinetochore module, the constitutive centromere associated network (CCAN) complex, assembled onto a Cenp-A nucleosome (CCAN-Cenp-ANuc). The structure explains the interdependency of the constituent subcomplexes of CCAN and shows how the Y-shaped opening of CCAN accommodates Cenp-ANuc to enable specific CCAN subunits to contact the nucleosomal DNA and histone subunits. Interactions with the unwrapped DNA duplex at the two termini of Cenp-ANuc are mediated predominantly by a DNA-binding groove in the Cenp-L-Cenp-N subcomplex. Disruption of these interactions impairs assembly of CCAN onto Cenp-ANuc. Our data indicate a mechanism of Cenp-A nucleosome recognition by CCAN and how CCAN acts as a platform for assembly of the outer kinetochore to link centromeres to the mitotic spindle for chromosome segregation.
|
Oct 2019
|
|
Krios III-Titan Krios III at Diamond
|
Diamond Proposal Number(s):
[19865]
Open Access
Abstract: Yeast Tel1 and its highly conserved human ortholog ataxia-telangiectasia mutated (ATM) are large protein kinases central to the maintenance of genome integrity. Mutations in ATM are found in ataxia-telangiectasia (A-T) patients and ATM is one of the most frequently mutated genes in many cancers. Using cryoelectron microscopy, we present the structure of Tel1 in a nucleotide-bound state. Our structure reveals molecular details of key residues surrounding the nucleotide binding site and provides a structural and molecular basis for its intrinsically low basal activity. We show that the catalytic residues are in a productive conformation for catalysis, but the phosphatidylinositol 3-kinase-related kinase (PIKK) regulatory domain insert restricts peptide substrate access and the N-lobe is in an open conformation, thus explaining the requirement for Tel1 activation. Structural comparisons with other PIKKs suggest a conserved and common allosteric activation mechanism. Our work also provides a structural rationale for many mutations found in A-T and cancer.
|
Nov 2019
|
|