I18-Microfocus Spectroscopy
|
Abstract: The colonization and weathering of young seafloor basaltic glass from the mid-Atlantic Ridge was examined. Microorganisms were localised to fractures in the surface of the basalt and grew on the surfaces of material in the fractures. XAS, Raman Spectroscopy and NanoSIMS analysis of the fracture-filling material shows that it contains non-crystallised iron-enriched altered glass and poorly ordered iron oxides. Organisms, which in places develop into contiguous biofilms, develop on the surface of the material. No putative biogenic alteration textures were observed in the basaltic glass at the fracture boundaries suggesting that the microbial community is restricted to the secondary alteration products. Microbial culturing shows the presence of heterotrophic bacteria including Sufitobacter and Halomonas consistent with observations of photic zone detritus associated with fracture-filling material. These data show that the interior of fresh basaltic glass is an endolithic habitat for microorganisms, but that the glass itself is not a primary source of cations or energy for the developing communities.
|
Oct 2010
|
|
I18-Microfocus Spectroscopy
|
|
Jul 2007
|
|
I18-Microfocus Spectroscopy
|
Abstract: Implant-derived material from metal-on-metal (MOM) hip arthroplasties may be responsible for an unexplained tissue inflammatory response. The chemical form of the metal species in the tissues is predominantly chromium (Cr), but the currently used techniques have not been able to determine whether this is Cr(III) phosphate or Cr(III) oxide. The analytical challenge must overcome the fact that the metal in the tissues is at a relatively low concentration and tissue preparation or the microscopy beam used can affect the results. Microfocus X-ray spectroscopy using a synchrotron beam is useful in addressing both these issues. Using this technique we compared tissue from failed MOM hips with: (1) tissue from metal-on-polyethylene (MOP) hips; (2) chemical standards; (3) metal discs cut from MOM hips. The most abundant implant-related species in all MOM hip tissues contained Cr. Comparison with standards revealed the chemical form was Cr(III) phosphate, which did not vary with manufacturer type (four types analysed) or level of blood metal ions. Cobalt (Co) and molybdenum (Mo) were occasionally present in areas of high Cr. Co was normally found in a metallic state in the tissue, while Mo was found in an oxidized state. The variety of metallic species may have arisen from corrosion, wear or a combination of both. No evidence of Cr(VI) was seen in the tissues examined.
|
Jun 2010
|
|
I18-Microfocus Spectroscopy
|
Abstract: Core/shell Fe/Cu and Fe/Au nanoparticles were prepared directly by deposition from the gas phase. A detailed study of the atomic structure in both the cores and shells of the nanoparticles was undertaken by means of extended absorption fine structure (EXAFS) measurements. For Fe/Cu nanoparticles, a Cu shell ∼20 monolayers thick appears similar in structure to bulk Cu and is sufficient to cause the structure in the Fe core to switch from body centred cubic (bcc; as in bulk Fe) to face centred cubic. This is not the case for thinner Cu shells, 12 monolayers in thickness, in which there is a considerable contraction in nearest-neighbour interatomic distance as the shell structure changes to bcc. In Fe/Au nanoparticles, the crystal structure in the Fe core remains bcc for all Au thicknesses although there is some stretching of the lattice. In thin Au shells ∼2 monolayers thick, there is strong contraction in interatomic distances. There does not appear to be significant alloying at the Fe/Au interface.
|
Sep 2010
|
|
I18-Microfocus Spectroscopy
|
Paul
Schofield
,
Andrew
Smith
,
Fred
Mosselmans
,
Hendrik
Ohldag
,
Andreas
Scholl
,
Simone
Raoux
,
Gordon
Cressey
,
Barbara
Cressey
,
Paul
Quinn
,
Caroline
Kirk
,
Simon
Hogg
Abstract: This work describes the application of microfocus X-ray absorption spectroscopy (XAS) and X-ray photo-emission electron microscopy (XPEEM) to the study of the complex mineralogical intergrowths within the Santa Catharina meteorite. The Santa Catharina meteorite of this study (BM52283 from the meteorite collection of the Natural History Museum, London, UK) primarily comprises a taenite bulk host phase (Fe:Ni ratio = 70.9 ± 0.8%:29.1 ± 0.8%) with a set of oxide-bearing cloudy zone textured regions (Fe:Ni:O ratio = 40.4 ± 0.3%:49.0 ± 0.7%:10.6 ± 0.8% at the core and Fe:Ni:O ratio = 34.4 ± 1.5%:42.7 ± 0.6%:22.9 ± 1.8% towards the rims) and numerous schreibersite (Fe:Ni:P ratio = 38.6 ± 1.6%:38.4 ± 0.9%:23.0 ± 0.5%) inclusions. Between the schreibersite and the taenite are rims up to 50 μm across of Ni-rich kamacite (Fe:Ni ratio = 93.4 ± 0.4%:6.6 ± 0.5%). No chemical zoning or spatial variations in the Fe and Ni speciation was observed within either the schreibersite or the kamacite phases. The oxide-bearing cloudy zone textured regions mostly comprise metallic Fe-Ni alloy, predominantly tetrataenite. Within the oxide phases, the Fe is predominantly, but not entirely, tetrahedrally co-ordinated Fe3+ and the Ni is octahedrally co-ordinated Ni2+. Structural analysis supports the suggestion that non-stoichiometric Fe2NiO4 trevorite is the oxide phase. The trevorite:tetrataenite ratio increases at the edges of the oxide-bearing cloudy zone textured regions indicating increased oxidation at the edges of these zones. The spatial resolution of the XPEEM achieved was between 110 and 150 nm, which precluded the study of either the previously reported ∼ 10 nm precipitates of tetrataenite within the bulk taenite or any antitaenite.
|
Jun 2010
|
|
I18-Microfocus Spectroscopy
|
Abstract: Thermal spraying is emerging as the leading route for the deposition of protective coatings onto engineering components to improve operation under extreme conditions of temperature, wear or corrosion. Detailed microstructural assessment is a key element in improving coating performance, and this study demonstrates the application of microfocus X-ray techniques to the determination of elemental and structural variations in the coatings.
|
Oct 2010
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[1115]
Abstract: The influence of soil organisms on metal mobility and bioavailability in soils is not currently fully understood. We conducted experiments to determine whether calcium carbonate granules secreted by the earthworm Lumbricus terrestris could incorporate and immobilise lead in lead- and calcium- amended artificial soils. Soil lead concentrations were up to 2000 mg kg-1 and lead:calcium ratios by mass were 0.5-8. Average granule production rates of 0.39 + 0.04 mgcalcite earthworm-1 day-1 did not vary with soil lead concentration. The lead:calcium ratio in granules increased significantly with that of the soil (r2 = 0.81, p = 0.015) with lead concentrations in granules reaching 1577 mg kg-1. X-ray diffraction detected calcite and aragonite in the granules with indications that lead was incorporated into the calcite at the surface of the granules. In addition to the presence of calcite and aragonite X-ray absorption spectroscopy indicated that lead was present in the granules mainly as complexes sorbed to the surface but with traces of lead-bearing calcite and cerussite. The impact that lead-incorporation into earthworm calcite granules has on lead mobility at lead-contaminated sites will depend on the fraction of total soil lead that would be otherwise mobile.
|
Feb 2011
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[1125]
Abstract: Disregulation of transition metal ions is implicated in many neurodegenerative disorders,
and altered status may both affect disease progression and hold biomarker potential. The analytical
challenges in this field often lead to isolated evidence for altered concentration, distribution, chemical or
mineral state, limiting the conclusions that can be drawn. Combining methods that are highly sensitive to
a range of these properties can give new insight.
|
Mar 2011
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[4842]
Abstract: Timescales of magma chamber assembly and recharge are investigated here by applying 1D and 2D diffusion modeling techniques to high-resolution maps of titanium in quartz from a large-volume ignimbrite eruption in the Taupo Volcanic Zone, New Zealand. We compare quartz zonation patterns and associated diffusion timescales from the ?340?ka Whakamaru super-eruption (magma volume ?1000?km3) with the Younger Toba Tuff super-eruption, 74?ka (2000?km3), Sumatra, and the smaller volume ?50?ka Earthquake Flat eruption (10?km3), Okataina Caldera Complex, New Zealand. Two principal timescales are presented: that of chamber recharge and eruption triggering events, and that of magma generation (involving long-term assembly, stirring and reactivation). Synchrotron micro-X-ray fluorescence maps of core–rim quartz transects provide a high-resolution record of magma chamber conditions throughout quartz crystallization. Quartz crystals from the Whakamaru magma display complex zonation patterns indicating fluctuating pressure–temperature conditions throughout the crystallization history. Toba and Earthquake Flat, in contrast, display simple quartz-zoning patterns and record slightly longer periods of crystal residence in the chamber that fed the eruption. We apply Lattice Boltzmann 2D diffusion modeling to reconstruct the timescales of quartz crystal zonation, accounting for crystal boundary complexities. Quartz crystal orientation is also accounted for by using geometry constraints from the synchrotron data. Our calculations suggest that crystal-mush reactivation for the main Whakamaru magma reservoir occured over a period of the order of 103–104 years. Both the Earthquake Flat and Toba eruptions experienced a significant recharge event (causing a temperature and pressure change), which occurred within ?100 years of eruption. In comparison, the complex Whakamaru quartz zoning patterns suggest that the magma body experienced numerous thermal and compositional fluctuations in the lead-up to eruption. The final magma recharge event, which most probably triggered the eruption, occurred within ?10–60 years of the eruption. Even though the volume of these systems spans two orders of magnitude, there does not appear to be a relationship between magma volume and diffusion timescale, suggesting similar histories before eruption.
|
Apr 2012
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[1793]
Abstract: Al3Ti, Al13Cr2 and Al13Fe4 are important intermetallics in a number of Al alloy systems including complex ultra-high-strength systems with excellent elevated-temperature performance. A full knowledge of their properties and crystallographic structures is a key factor for the understanding of these complex alloys. In the present study samples of the three pure intermetallics were prepared and regions of interest identified in a billet of Al93Fe3Cr2Ti2 alloys and 20 × 10 × 2 µm samples extracted utilizing a Focussed Ion Beam Transmission Electron Microscopy (FIB TEM) sample preparation technique. Using the microfocus spectroscopy beamline I18 at Diamond Light Source we were able to examine 5 µm sections of the samples using X-ray Diffraction (?-XRD) and Extended X-ray Absorption Fine Structure (?-EXAFS) in an attempt to describe the local structure of the second-phase particles and characterized the microstructure of the FIBed samples to selectively illuminate the different phases.
|
Nov 2010
|
|