I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[9914, 18747]
Abstract: Magmatic systems are dominated by five volatiles, namely H2O, CO2, F, Cl, and S (the igneous quintet). Multiple studies have measured partitioning of four out of these five volatiles (H2O, CO2, F, and Cl) between nominally volatile-free minerals and melts, whereas the partitioning of sulfur is poorly known. To better constrain the behavior of sulfur in igneous systems we measured the partitioning of sulfur between clinopyroxene and silicate melts over a range of pressure, temperature, and melt composition from 0.8 to 1.2 GPa, 1000 to 1240 °C, and 49 to 66 wt% SiO2 (13 measurements). Additionally, we determined the crystal-melt partitioning of sulfur for plagioclase (6 measurements), orthopyroxene (2 measurements), amphibole (2 measurements), and olivine (1 measurement) in some of these same run products. Experiments were performed at high and low oxygen fugacities, where sulfur in the melt is expected to be dominantly present as an S6+ or an S2– species, respectively. When the partition coefficient is calculated as the total sulfur in the crystal divided by the total sulfur in the melt, the partition coefficient varies from 0.017 to 0.075 for clinopyroxene, from 0.036 to 0.229 for plagioclase, and is a maximum of 0.001 for olivine and of 0.003 for orthopyroxene. The variation in the total sulfur partition coefficient positively correlates with cation-oxygen bond lengths in the crystals; the measured partition coefficients increase in the order: olivine < orthopyroxene < clinopyroxene ≤ amphibole and plagioclase. At high oxygen fugacities in hydrous experiments, the clinopyroxene/melt partition coefficients for total sulfur are only approximately one-third of those measured in low oxygen fugacity, anhydrous experiments. However when the partition coefficient is calculated as total sulfur in the crystal divided by S2– in the melt, the clinopyroxene/melt partition coefficients for experiments with melts between ~51 and 66 wt% SiO2 can be described by a single mean value of 0.063 ± 0.010 (1σ standard deviation about the mean). These two observations support the hypothesis that sulfur, as S2–, replaces oxygen in the crystal structure. The results of hydrous experiments at low oxygen fugacity and anhydrous experiments at high oxygen fugacity suggest that oxygen fugacity has a greater effect on sulfur partitioning than water. Although the total sulfur clinopyroxene-melt partition coefficients are affected by the Mg/(Mg+Fe) ratio of the crystal, partition coefficients calculated using S2– in the melt display no clear dependence upon the Mg# of the clinopyroxene. Both the bulk and the S 2– partition coefficients appear unaffected by IVAl in the clinopyroxene structure. No effect of anorthite content nor of iron concentration in the crystal was seen in the data for plagioclase-melt partitioning. The data obtained for orthopyroxene and olivine were too few to establish any trends. The partition coefficients of total sulfur and S 2– between the crystals studied and silicate melts are typically lower than those of fluorine, higher than those of carbon, and similar to those of chlorine and hydrogen. These sulfur partition coefficients can be combined with analyses of volatiles in nominally volatile-free minerals and previously published partition coefficients of H2O, C, F, and Cl to constrain the concentration of the igneous quintet, the five major volatiles in magmatic systems.
|
May 2020
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[15802]
Open Access
Abstract: Bacteria acquire phosphate (Pi) by maintaining a periplasmic concentration below environmental levels. We recently described an extracellular Pi buffer which appears to counteract the gradient required for Pi diffusion. Here, we demonstrate that various treatments to outer membrane (OM) constituents do not affect the buffered Pi because bacteria accumulate Pi in the periplasm, from which it can be removed hypo-osmotically. The periplasmic Pi can be gradually imported into the cytoplasm by ATP-powered transport, however, the proton motive force (PMF) is not required to keep Pi in the periplasm. In contrast, the accumulation of Pi into the periplasm across the OM is PMF-dependent and can be enhanced by light energy. Because the conventional mechanism of Pi-specific transport cannot explain Pi accumulation in the periplasm we propose that periplasmic Pi anions pair with chemiosmotic cations of the PMF and millions of accumulated Pi pairs could influence the periplasmic osmolarity of marine bacteria.
|
May 2020
|
|
I18-Microfocus Spectroscopy
|
M.
Bourdenx
,
A.
Nioche
,
S.
Dovero
,
M.-l.
Arotcarena
,
S.
Camus
,
G.
Porras
,
M.-l.
Thiolat
,
N. P.
Rougier
,
A.
Prigent
,
P.
Aubert
,
S.
Bohic
,
C.
Sandt
,
F.
Laferrière
,
E.
Doudnikoff
,
N.
Kruse
,
B.
Mollenhauer
,
S.
Novello
,
M.
Morari
,
T.
Leste-lasserre
,
I. Trigo
Damas
,
M.
Goillandeau
,
C.
Perier
,
C.
Estrada
,
N.
Garcia-carrillo
,
A.
Recasens
,
N. N.
Vaikath
,
O. M. A.
El-agnaf
,
M. T.
Herrero
,
P.
Derkinderen
,
M.
Vila
,
J. A.
Obeso
,
B.
Dehay
,
E.
Bezard
Diamond Proposal Number(s):
[13009]
Open Access
Abstract: Dopaminergic neuronal cell death, associated with intracellular α-synuclein (α-syn)–rich protein aggregates [termed “Lewy bodies” (LBs)], is a well-established characteristic of Parkinson’s disease (PD). Much evidence, accumulated from multiple experimental models, has suggested that α-syn plays a role in PD pathogenesis, not only as a trigger of pathology but also as a mediator of disease progression through pathological spreading. Here, we have used a machine learning–based approach to identify unique signatures of neurodegeneration in monkeys induced by distinct α-syn pathogenic structures derived from patients with PD. Unexpectedly, our results show that, in nonhuman primates, a small amount of singular α-syn aggregates is as toxic as larger amyloid fibrils present in the LBs, thus reinforcing the need for preclinical research in this species. Furthermore, our results provide evidence supporting the true multifactorial nature of PD, as multiple causes can induce a similar outcome regarding dopaminergic neurodegeneration.
|
May 2020
|
|
I18-Microfocus Spectroscopy
|
Open Access
Abstract: The first experimental results from a new transmissive diagnostic instrument for synchrotron X-ray beamlines are presented. The instrument utilizes a single-crystal chemical-vapour-deposition diamond plate as the detector material, with graphitic wires embedded within the bulk diamond acting as electrodes. The resulting instrument is an all-carbon transmissive X-ray imaging detector. Within the instrument's transmissive aperture there is no surface metallization that could absorb X-rays, and no surface structures that could be damaged by exposure to synchrotron X-ray beams. The graphitic electrodes are fabricated in situ within the bulk diamond using a laser-writing technique. Two separate arrays of parallel graphitic wires are fabricated, running parallel to the diamond surface and perpendicular to each other, at two different depths within the diamond. One array of wires has a modulated bias voltage applied; the perpendicular array is a series of readout electrodes. X-rays passing through the detector generate charge carriers within the bulk diamond through photoionization, and these charge carriers travel to the nearest readout electrode under the influence of the modulated electrical bias. Each of the crossing points between perpendicular wires acts as an individual pixel. The simultaneous read-out of all pixels is achieved using a lock-in technique. The parallel wires within each array are separated by 50 µm, determining the pixel pitch. Readout is obtained at 100 Hz, and the resolution of the X-ray beam position measurement is 600 nm for a 180 µm size beam.
|
May 2020
|
|
I18-Microfocus Spectroscopy
|
Antonios
Vamvakeros
,
Dorota
Matras
,
Simon D. M.
Jacques
,
Marco
Di Michiel
,
Stephen W. T.
Price
,
Pierre
Senecal
,
Miren
Agote Aran
,
Vesna
Middelkoop
,
Gavin B. G.
Stenning
,
J. Frederick W.
Mosselmans
,
Ilyas Z.
Ismagilov
,
Andrew M.
Beale
Diamond Proposal Number(s):
[14525]
Abstract: In this work, we present the results from multi-length-scale studies of a Mn-Na-W/SiO2 and a La-promoted Mn-Na-W/SiO2 catalyst during the oxidative coupling of methane reaction. The catalysts were investigated from the reactor level (mm scale) down to the single catalyst particle level (μm scale) with different synchrotron X-ray chemical computed tomography techniques (multi-modal chemical CT experiments). These operando spatially-resolved studies performed with XRD-CT (catalytic reactor) and multi-modal μ-XRF/XRD/absorption CT (single catalyst particle) revealed the multiple roles of the La promoter and how it provides the enhancement in catalyst performance. It is also shown that non-crystalline Mn species are part of the active catalyst component rather than crystalline Mn2O3/Mn7SiO12 or MnWO4.
|
Jun 2020
|
|
I18-Microfocus Spectroscopy
|
Open Access
Abstract: Purpose : The purpose of this study was to investigate the distribution of Ca, Fe and Zn using X-ray fluorescence in human RPE/Bruch’s membrane/choroid with and without early AMD.
Methods : We used a set of unfixed frozen human retinal pigment epithelium (RPE)/choroid samples from young (n=1, female aged 34) and aged donors with (n=4, males, aged 73-78) and without (n=3, one female, aged 75-77) early AMD from Manchester Eye Tissue Repository. Using X-ray fluorescence microscopy (I18 Diamond light source, UK) with a 2 um beam, we obtained high-resolution Ca, Zn, Fe, sulphur, potassium, chloride and phosphorus maps covering areas up to 100 x 600 um2 of 30 um thick sections placed on quartz holders and scanned at room temperature
Results : Calcification was observed in the 3 groups. In the 34-year old sample, sparse small Ca spherules (2x2 um2) at the RPE/Bruch’s membrane interface not colocalising with Zn or Fe. In aged samples, with and without AMD, calcified nodules within RPE cells, at RPE/Bruch’s membrane interface and within druse in AMD. Every calcified nodule colocalised with Zn. Quantification revealed two types (high Zn content, low Zn content). In aged donors without AMD, high-Zn calcified nodules with Ca concentration of 3083+1679 ppm (mean+SD) (maximum 12809+9311) and Zn 66+55 ppm (max 125+75). The average size was 27+15 um2. In aged samples with AMD, high-Zn calcified nodules with average Ca concentration of 4316+1723 ppm (max 13105+7563) and Zn 97+57 ppm (max 201+143). Size 26x10 um2. In the aged non-AMD group, the low zinc-calcification nodules contained an average Ca ppm of 915+259 (max 1475+380) and Zn 33+18 ppm (max 40+21). The average size 28x16 um2. In the AMD group, the low Zn calcified nodules average Ca ppm 1544+1450 (max 3526+5289) and average Zn ppm 47+23 (max 64+37). Average size 19x10 um2. Calcified plaques in Bruch’s membrane from aged donors with and without AMD. Some of these plaques colocalised with Zn and also Fe. Fe-loaded structures in the choriocapillaris underlying calcified nodules and plaques.
Conclusions : Calcific nodules contain zinc in older eyes with and without AMD. Calcified nodules with lower amounts of Ca contained lower amounts of Zn, so the accumulation of Ca may occur in parallel to Zn. It is possible that iron-loaded structures in the choriocapillaris are macrophages.
|
Jun 2020
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[23210]
Abstract: Mankind is facing a phosphorus (P) crisis. P recycling from anthropogenic waste is critical to close the P loop. Pyrolysis could be the ideal treatment for materials, such as sewage sludge, producing a safe, nutrient-rich biochar product while sequestering the inherent carbon (C). However, pyrolysed sewage sludge typically contains low levels of potassium (K) and plant available P making the material rather unsuitable for use as fertiliser. Here, a novel treatment was investigated to produce an optimised P and K biochar fertiliser. We doped sewage sludge with a low-cost mineral (2 and 5% potassium acetate) and pyrolysed it at 700°C. The percentage water-extractable of the total P content in biochar increased by 237-times with 5% K addition compared to the undoped biochar. After six water-extractions, all the K and 16% of P was obtained. Further optimisation is feasible through adjustments of the biochar pH or doping the feedstock with other forms of K. Using XANES and synchrotron XRF mapping, we identified highly soluble potassium hydrogen phosphate up to 200-300 µm below the biochar surface. This simple and cost-effective modification enables the use of sewage sludge as safe biochar fertiliser with tailored P availability that also supplies K, improves soil properties and sequesters C.
|
Jul 2020
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[18676]
Abstract: The in-situ formation of lead-sulfur inorganic compounds in historical oil paintings can have a strong detrimental effect on an artwork’s physical and visual integrity. In this paper, paint micro-samples collected from several paintings from the Rijksmuseum (Amsterdam) and Mauritshuis (The Hague) collections were probed at the micro-scale using a combination of synchrotron micro-XRD and XRD-CT. This permitted to precisely identify the chemical nature of the in-situ formed crystalline compounds as well as to chart their distribution within paint layers at the microscopic level. This provided new information on the origin of the ions involved in the crystallization of the various newly formed mineral lead-sulfur products. The formation of palmierite K2Pb(SO4)2, anglesite PbSO4 and lanarkite Pb2(SO4)O in historical samples can thus be connected to paint stratigraphic build-up, environmental conditions and potential past restoration treatments.
|
Jul 2020
|
|
I18-Microfocus Spectroscopy
|
Abstract: Sulfur is a key volatile element in magmatic systems that exists in many phases (e.g. melt or gas), in multiple-oxidation states (S²⁻, S⁴⁺ and S⁶⁺), and has more than one stable isotope (e.g. ³²S and ³⁴S). Therefore, by measuring S, information regarding the conditions of a magma can be acquired. The aim of this work is to investigate what S can tell us about the behaviour of late-stage lunar basaltic magmas. An analytical protocol was developed to simultaneously measure S and Cl abundances and isotopes of lunar apatite in eleven lunar basalts with nano-scale secondary ion mass spectrometry (NanoSIMS). Additionally, a method was developed to measure the oxidation state of S in apatites of five mare basalts with X-ray absorption near-edge structure (XANES) spectroscopy at the S K-edge, making it possible to compare S oxidation state and S isotopes of lunar apatite for the first time.
Lunar apatites contain ~20–2,800 ppm S, with δ³⁴S values between -33.3 ± 3.8‰ and +36.4 ± 3.2‰ (2σ). The Cl abundance is ~350–7,230 ppm, with δ³⁷Cl values of +6.5‰ ± 0.9‰ to +36.5‰ ± 1.1‰ (2σ). All of the apatites have S⁶⁺/ΣS(tot) ratios of >0, with average S⁶⁺/ΣS(tot) values between 0.05 and 0.55.
An absence of correlation between S and Cl isotopes suggests a lack of evolutionary relationship between S and KREEP-rich components. The direction of S isotope fractionation, negative or positive, can be explained by degassing of H₂S and SO₂ from a relatively reduced (S²⁻) or oxidized (SO₄²⁻) late-stage silicate melt, respectively. The historical existence of relatively oxidized late-stage silicate melts is also evidenced by the presence of S⁶⁺ in lunar apatite. A positive trend is apparent between S⁶⁺/ΣS(tot) and δ³⁴S which is indicative of the dependence of S isotope fractionation on the oxygen fugacity of the late-stage silicate melt.
|
Jul 2020
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[22876]
Abstract: Fly ash represents a promising alternative source of rare earth elements (REE). However, information on REE containing mineral phases and their association with other fly ash components, vital for REE recovery from fly ash, is currently lacking. Herein, the mass fraction, distribution, crystallography and solid-state chemistry of REE, U and Th in Nigerian simulated fly ash samples were characterised using a range of laboratory and synchrotron x-ray based analytical techniques to underpin future extraction methodologies. Inductively coupled plasma mass spectrometry following full-acid digest of forty-five samples revealed recoverable average total REE content which ranged between 442 mgkg−1and 625 mgkg−1, comprising over 30 wt% of the critical REE Nd, Eu, Tb, Dy, Y and Er. These REE within the fly ash samples were found to be most frequently associated with discrete monazite, xenotime and Y-bearing zircon mineral particles, with the former the most detected, which could be beneficiated through gravity separation. Analysis of monazite particles isolated from the composite samples through a complimentary suite of analytical synchrotron radiation techniques revealed a core-shell pattern, with the shell rich in colocalised Ce, Nd and La, and the core enrich in both U and Th. Ce in monazite was found to exist in a mixed trivalent and tetravalent oxidation state, with the monazite structure amorphized due to the high temperature combustion process. Such results demonstrate the strong co-association and physical distribution of REE, U and Th within monazite in fly ash; knowledge of which can subsequently be used to optimise or develop a more selective, cost-effective and environmentally friendly solvent extraction methodology, by targeting the strongly colocalised and surface bound REE in fly ash monazite particles.
|
Aug 2020
|
|