B18-Core EXAFS
I18-Microfocus Spectroscopy
|
Abstract: The chemistry of aerosol particles is critical to the influence said particles have over human health, air quality and the distribution of nutrients across the world. Current models estimate that windborne dust represents the movement of thousands of teragrams of solid material of varying composition and solubility across continents and into the world’s oceans. Understanding the composition and surface reactivity of anthropogenic particles from industry, agriculture and vehicle emissions is vital to understanding their potential impact on the world, and the structure and behaviour of inhalable pharmaceuticals is a strong determinant of their efficacy.
The following work examines a broad selection of natural and anthropogenic particulate samples with synchrotron-based techniques, including analysis of ship emissions collected directly from stacks for the first time. The effect of simulated atmospheric acid processing on the solubility of iron on coal fly ash is evaluated, and optical trapping is used in conjunction with analytical techniques to observe the influence of relative humidity on the properties of pharmaceutical aerosols and aqueous droplets containing fluorescent protein solutions.
|
Jul 2018
|
|
I18-Microfocus Spectroscopy
|
Abstract: This ASU review focuses on developments in applications of atomic spectrometry to the characterisation of metals, chemicals and functional materials. While each of these application categories is very distinct in terms of the analytical challenges posed, there are a number of common themes than can be identified from an examination of the relevant literature appearing over the review period. The traditional atomic spectrometry techniques (e.g. AAS, OES, XRF, ICP-MS) are relatively mature, but reports continue to appear that seek to address perceived limitations in sensitivity in certain applications, but increasingly more frequently in relation to sample handling and preparation/extraction methodologies, validation and creation of SRMs and methods. However, it is equally clear that because of that very maturity such techniques are more often cited as analytical reference methods to support the development of other approaches (e.g. GD-OES, GD-MS, PIXE, PIGE, RBS, SEM-EDS, SIMS, TXRF, micro- and macro-XRF, XAS, XPS) that provide either direct sampling or depth and lateral elemental profiling capabilities. Consequently, a variety of techniques may now be routinely applied within an individual study to characterise samples to the extent it is hard to comment critically on the particular analytical novelty that lies at the heart of the work. It is fair to say that in some cases, the significance of the research now involves revealing the features of the sample (including examining surface modifications, coatings, thin films and multilayers, or even the characteristics of a device, functional component, or object, or complex mixture) rather than in the development of the analytical approach itself. That said, certain trends in technique development still expand the range of applications that can be addressed. For example, interest in LIBS continues to command attention and is heavily cited in most application sections of this review. The technique offers certain unique advantage for elemental analysis in rapid direct sampling, portability and operating in remote and harsh environments (including industrial production) where low level detection is not essential. Clearly sensitivity remains the Achilles' heel for LIBS but developments in measurement technique such as pulse delay are resulting in better optimised procedures. The development in laser solid sampling technology is providing benefits applicable to other techniques such as ICP-MS and newer variants such as laser ionisation MS. Indeed, lasers, flames, plasmas and other electrical discharges have been used regularly in the fabrication of samples. The atomic spectrometry techniques with which they have been associated are now employed to study such production processes in situ. The development of nanomaterials has given rise to new approaches to particle size distribution and single particle characterisation where the atomic spectrometric determination produces a size rather than a concentration. There is evidence too in the review of research work going on to understand the environmental consequences of the widespread use of new technologies using data analysis approaches to examine source, provenance or impact. Consequently, while the fundamental analytical questions: “What?” and “How much?” continue to be relevant to researchers increasingly these must now be qualified in many situations by providing answers to enquiries such as “Where?” and “How big (or small)?”.
|
Oct 2016
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[8861]
Open Access
Abstract: With the advent of high-throughput and imaging core level spectroscopies (including X-ray absorption spectroscopy, XAS, as well as electron energy loss spectroscopy, EELS), automated data processing, visualisation and analytics will become a necessity. As a first step towards these objectives we examined the possibilities and limitations of a simple automated XANES peak fitting procedure written in MATLAB, for the parametrisation of XANES features, including ionisation potentials as well as the energies and intensities of electronic transitions. Using a series of Au L3-edge XANES reference spectra we show that most of the relevant information can be captured through a small number of rules applied to constrain the fits. Uncertainty in this strategy arises mostly when the ionisation potential (IP) overlaps with weak electronic transitions or features in the continuum beyond the IP, which can result in ambiguity through multiple equally good fits.
|
May 2016
|
|
I18-Microfocus Spectroscopy
|
Open Access
Abstract: With the development of fourth-generation high-brightness synchrotrons on the horizon, the already large volume of data that will be collected on imaging and mapping beamlines is set to increase by orders of magnitude. As such, an easy and accessible way of dealing with such large datasets as quickly as possible is required in order to be able to address the core scientific problems during the experimental data collection. Savu is an accessible and flexible big data processing framework that is able to deal with both the variety and the volume of data of multimodal and multidimensional scientific datasets output such as those from chemical tomography experiments on the I18 microfocus scanning beamline at Diamond Light Source.
|
Jan 2017
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[7450, 7453]
Abstract: Iron from multiple brain regions in Alzheimer’s disease (AD), Parkinson’s disease (PD), and Multiple System Atrophy (MSA) is compared with healthy controls. Altered iron regulation has been observed in various forms in many neurodegenerative disorders; its contribution to disease progression remains an active topic of research. Dysregulation of metal elements besides iron is implicated in various pathological processes, but tracemetals analysis in human brain almost invariably occurs post-mortem. Iron is unusual; it holds particular scope for clinical detection by magnetic resonance imaging (MRI). Iron’s influence on certain MRI parameters is well-demonstrated, but clinical attribution of MRI signal to iron requires validation in context. By testing relationships between regional brain iron in human tissue, and relevant MRI parameters, we are exploring the potential to differentiate between neurodegenerative disorders on the basis of brain iron status. Some iron changes arguably precede the extensive degeneration that is clinically observed in later stages of disease.
|
May 2013
|
|
I18-Microfocus Spectroscopy
|
Abstract: We present Ba L3-X-ray Absorption Fine Structure (XAFS) data from a suite of barium carbonates (witherite, alstonite, barytocalcite), hydroxides, sulfate(vi) (barite) and a Ba-bearing organic compound to explore whether Ba L3-XAFS could be used to fingerprint structural states in biominerals such as celestite, aragonite and calcite. Although there is a general similarity between all X-ray Absorption Near Edge Structure (XANES), subtle differences are observed in detail, which allow almost all phases to be distinguished. The XANES are considered as composites of four components, termed ‘A’ (5255 eV), ‘B’ (5258 eV), ‘C’ (5268 eV) and ‘D’ (5273 eV). ‘A’ is observed in barium hydroxides and most visible in the first derivatives of the XANES data. The minimum after the Ba L3 white line lies at 5257 eV for most materials but higher (5261 eV) for barium hydroxides due to the influence of the ‘A’ component. ‘B’ is present in aragonite-group minerals (witherite and alstonite) and may be a fingerprint of that structural state. ‘C’ and ‘D’ overlap and form a board hump at ∼ 5270 eV, but the relative proportions of ‘C’ and ‘D’ are variable between phases and are to some degree diagnostic. Refinement of Extended X-ray Absorption Fine Structure (EXAFS) allows estimates of first shell (Ba–O) bond distances in all materials, which are within 4% of average distances estimated from diffraction studies. Subsequent shells (Ba–S for barite; Ba–metal in witherite, alstonite and barytocalcite) can be resolved. The state of Ba:Ca order in alstonite and barytocalcite is successfully modelled and both are found to be fully ordered. The significant static disorder in Ba-bearing minerals is accommodated successfully by large Debye–Waller values in the refinements. Combinations of XANES and EXAFS allow all phases to be identified, with the exception that the two hydrated barium hydroxides cannot be distinguished from each other. The XANES of a celestite (SrSO4 containing ∼ 100 ppm Ba) is comparable to the barite spectra after only seven cycles (collected over < 5 h), showing that XANES can be resolved in samples with low Ba concentrations. However we were unable to analyse successfully an aragonitic Porites coral skeleton (containing ∼ 3–4 ppm Ba) using the current instrumentation due to the proximity in energy of Ca Kα secondary X-radiation to the Ba Lα energy and which overloaded the X-ray detector. The use of multilayer crystal detectors will be required to resolve the Ba Lα energy in calcium carbonate samples containing low Ba concentrations. Alternatively Ba EXAFS may be accessible through the Ba K edge.
|
Jan 2010
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[8597]
Abstract: Many exceptionally preserved fossils have long been thought the product of preservation by bacterial autolithification, based largely upon the presence of, micron-sized, spherical or elongate bodies on their surface. This has recently been challenged by studies of similar fossils which cite morphological and geochemical evidence that these structures could be fossilized melanosomes, melanin-containing organelles. We geochemically analysed a tadpole from the Oligocene Enspel Formation, Germany, which displays such spherical bodies on its surface. Pyrolysis gas chromatography mass spectroscopy (Py-GCMS) and Fourier transform infrared spectrometry (FTIR) indicate that the organic remains of the tadpole are original and are not the result of external contamination, shown by the different chemical compositions of the fossil and its enclosing matrix. Py-GCMS also demonstrates the presence of bacterial and plant biomarkers in the matrix but not the tadpole, suggesting that the spherical bodies are unlikely to be bacterial, and also that such fossils do not develop their dark colour from incorporating plant material, as has been suggested. X-ray absorption spectroscopy (XAS) shows high levels of organically bound Zn(II) in the fossilized soft tissue, a metal known to chelate both eu- and pheomelanin. The zinc in the tadpole shows greater similarity to that bound in pheomelanized extant samples than to that in eumelanized ones. Though further geochemical analysis of both pure pheomelanin and bacterial samples is required to completely exclude a bacterial origin, these results are in line with a pheomelanic origin for the spherical bodies on the tadpole.
|
Nov 2014
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[7757]
|
Nov 2013
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[6647]
Open Access
Abstract: A Serratia sp. bacterium manufactures amorphous calcium phosphate nanominerals (BHAP); this material has shown increased sorption capacity for divalent radionuclide capture. When heat-treated (≥450 °C) the cell biomass is removed and the biominerals are transformed to hydroxyapatite (HAP). Using a multimethod approach, we have elucidated both the site preferences and stability of analogue radionuclide incorporation for Sr, Co, Eu, and U. Strontium incorporates within the bulk amorphous inorganic phase of BHAP; however, once temperature modified to crystalline HAP, bonding was consistent with Sr substitution at the Ca(1) and/or Ca(2) sites. Cobalt incorporation occurs within the bulk inorganic amorphous phase of BHAP and within the amorphous grain boundaries of HAP. Europium (an analogue for trivalent actinides) substituted at the Ca(2) and/or the Ca(3) position of tricalcium phosphate, a known component of HAP grain boundaries. Uranium was surface complexed with no secondary minerals detected. With multiple sites for targeted radionuclide incorporation, high loadings, and good stability against remobilization, BHAP is shown to be a potential material for the remediation of aqueous radionuclide in groundwater.
|
May 2014
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[5010]
Open Access
Abstract: Some plant growth promoting bacteria (PGPB) are enigmatic in enhancing plant growth in the face of increased metal accumulation in plants. Since most PGPB colonize the plant root epidermis, we hypothesized that PGPB confer tolerance to metals through changes in speciation at the root epidermis.
We employed a novel combination of fluorophore-based confocal laser scanning microscopic imaging and synchrotron based microscopic X-ray fluorescence mapping with X-ray absorption spectroscopy to characterize bacterial localization, zinc (Zn) distribution and speciation in the roots of Brassica juncea grown in Zn contaminated media (400 mg kg−1 Zn) with the endophytic Pseudomonas brassicacearum and rhizospheric Rhizobium leguminosarum.
PGPB enhanced epidermal Zn sequestration relative to PGBP-free controls while the extent of endophytic accumulation depended on the colonization mode of each PGBP. Increased root accumulation of Zn and increased tolerance to Zn was associated predominantly with R. leguminosarum and was likely due to the coordination of Zn with cysteine-rich peptides in the root endodermis, suggesting enhanced synthesis of phytochelatins or glutathione.
Our mechanistic model of enhanced Zn accumulation and detoxification in plants inoculated with R. leguminosarum has particular relevance to PGPB enhanced phytoremediation of soils contaminated through mining and oxidation of sulphur-bearing Zn minerals or engineered nanomaterials such as ZnS.
|
Aug 2015
|
|