I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[12907]
Open Access
Abstract: One of the major obstacles in replacing the widely used zinc dialkyldithiophosphate (ZDDP) antiwear additive with a more environmentally friendly one is the difficulty of time-resolving the surface species resulting from its decomposition mechanism under high contact pressure and temperature. To tackle this issue, a newly developed miniature pin-on-disc tribotester was coupled with synchrotron X-ray absorption spectroscopy (XAS) to perform in situ tribological tests while examining the composition of the formed triboreactive films. The results showed that in the case of bare steel surfaces the initial decomposition products are mainly zinc sulfate species, which with further shearing and heating are reduced to zinc sulfide mixed with metal oxides. The mixed base layer seems to enhance the tenacity of the subsequently formed zinc phosphate layers composing the main bulk of the protective triboreactive film. This base layer was not observed in the case of coated substrates with hydrogenated diamond-like carbon (a-C:H DLC) coating, which results in the formation of less durable films of small volume barely covering the contacting surfaces and readily removed by shear. Comprehensive decomposition pathways and kinetics for the ZDDP triboreactive films are proposed, which enable the control and modification of the ZDDP triboreactive films.
|
Oct 2018
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[14793, 15903]
Abstract: Eudialyte group minerals (EGM) attract global interest as potential resources for High Field
Strength Elements (HFSE, e.g. Zr, Nb, Ta, and Rare Earth Elements, REE), i.e. critical
materials for modern technologies. They are particularly valued for their relative enrichment
in the most critical lanthanides, i.e. Nd and heavy REE (Gd-Lu). However, REE substitution
mechanisms into the EGM structure are still poorly understood. Light and heavy REE may
occupy different sites and there may be ordering and/or defect clustering in the structure. This
study uses X-ray Absorption Spectroscopy (XAS) to determine the structural state of REE in
EGM from prospective eudialyte-bearing complexes. Yttrium K-edge and Nd L3-edge spectra
were collected as proxies for heavy and light REE, respectively, and compared to natural and
synthetic REE-bearing standards. Extended X-ray Absorption Fine Structure (EXAFS) data
yield best fits for Y in six-fold coordination with Y-O distances of 2.24-2.32 Å, and a second
coordination sphere comprising Fe, Na, Ca, Si and O at radial distances of 3.6-3.8 Å. These
findings are consistent with dominant Y3+ substitution for Ca2+ on the octahedral M1 site in
all samples studied, and exclude preferential substitution of Y3+ onto the smaller octahedral Z
site or the large low-symmetry N4 site. Using lattice strain theory, we constructed relative partitioning models to predict site
preferences of lanthanides we have not directly measured. The models predict that all REE
are favoured on the Ca-dominant M1 site and that preferential partitioning of heavy over light
REE increases in EGM containing significant Mn in the M1-octahedral rings (oneillite
3
subgroup). Thus, the flat REE profiles that make EGM such attractive exploration targets are
not due to preferential partitioning of light and heavy REE onto different sites. Instead, local
ordering of Mn- and Ca-occupied M1 sites may influence the capacity of EGM to
accommodate heavy REE.
|
Aug 2019
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[15854, 19779]
Open Access
Abstract: Transition metals have essential roles in brain structure and function, and are associated with pathological processes in neurodegenerative disorders classed as proteinopathies. Synchrotron x-ray techniques, coupled with ultrahigh-resolution mass spectrometry, have been applied to study iron and copper interactions with amyloid β (1–42) or α-synuclein. Ex vivo tissue and in vitro systems were investigated, showing the capability to identify metal oxidation states, probe local chemical environments, and localize metal-peptide binding sites. Synchrotron experiments showed that the chemical reduction of ferric (Fe3+) iron and cupric (Cu2+) copper can occur in vitro after incubating each metal in the presence of Aβ for one week, and to a lesser extent for ferric iron incubated with α-syn. Nanoscale chemical speciation mapping of Aβ-Fe complexes revealed a spatial heterogeneity in chemical reduction of iron within individual aggregates. Mass spectrometry allowed the determination of the highest-affinity binding region in all four metal-biomolecule complexes. Iron and copper were coordinated by the same N-terminal region of Aβ, likely through histidine residues. Fe3+ bound to a C-terminal region of α-syn, rich in aspartic and glutamic acid residues, and Cu2+ to the N-terminal region of α-syn. Elucidating the biochemistry of these metal-biomolecule complexes and identifying drivers of chemical reduction processes for which there is evidence ex-vivo, are critical to the advanced understanding of disease aetiology.
|
Oct 2019
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[17250]
Abstract: From oxic atmosphere to metallic core, the Earth's components are broadly stratified with respect to oxygen fugacity. A simple picture of reducing oxygen fugacity with depth may be disrupted by the accumulation of oxidised crustal material in the deep lower mantle, entrained there as a result of subduction. While hotspot volcanoes are fed by regions of the mantle likely to have incorporated such recycled material, the oxygen fugacity of erupted hotspot basalts had long been considered comparable to or slightly more oxidised than that of mid-ocean ridge basalt (MORB) and more reduced than subduction zone basalts. Here we report measurements of the redox state of glassy crystal-hosted melt inclusions from tephra and quenched lava samples from the Canary and Cape Verde Islands, that we can independently show were entrapped prior to extensive sulphur degassing. We find high ferric iron to total iron ratios (Fe3+/∑Fe) of up to 0.27–0.30, indicating that mantle plume primary melts are significantly more oxidised than those associated with mid-ocean ridges and even subduction zone. These results, together with previous investigations from the Erebus, Hawaiian and Icelandic hotspots, confirm that mantle upwelling provides a return flow from the deep Earth for components of oxidised subducted lithosphere and suggest that highly oxidised material accumulates or is generated in the lower mantle. The oxidation state of the Earth's interior must therefore be highly heterogeneous and potentially locally inversely stratified.
|
Dec 2019
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[15971, 17888]
Abstract: Rhizosphere soil has distinct physical and chemical properties from bulk soil. However, besides root induced physical changes, chemical changes have not been extensively measured in situ on the pore scale.
In this study we couple structural information, previously obtained using synchrotron X‐ray computed tomography (XCT), with synchrotron X‐ray Fluorescence (SR‐XRF) microscopy and X‐ray Absorption Near‐Edge Structure (XANES) to unravel chemical changes induced by plant roots.
Our results suggest that iron (Fe) and sulfur (S) increase notably in the direct vicinity of the root via solubilization and microbial activity. XANES further shows that Fe is slightly reduced, S is increasingly transformed into sulfate (SO42‐) and that phosphorus (P) is increasable adsorbed to humic substances in this enrichment zone. In addition, the ferrihydrite fraction decreases drastically suggesting the preferential dissolution and the formation of more stable Fe‐oxides. Additionally, the increased transformation of organic S to sulfate indicates that the microbial activity in this zone is increased. These changes in soil chemistry correspond to the soil compaction zone as previously measured via X‐ray CT.
The fact that these changes are co‐located near the root and the compaction zone suggests that decreased permeability due to soil structural changes acts as a barrier creating a zone with increased rhizosphere chemical interactions via surface mediated processes, microbial activity and acidification.
|
Oct 2019
|
|
I18-Microfocus Spectroscopy
|
Abstract: Determining the oxidation state of Fe through parameterization of X-ray absorption near-edge structure (XANES) spectral features is highly dependent on accurate and repeatable energy calibration between spectra. Small errors in energy calibration can lead to vastly different interpretations. While simultaneous measurement of a reference foil is often undertaken on X-ray spectroscopy beamlines, other beamlines measure XANES spectra without a reference foil and therefore lack a method for correcting energy drift. Here a method is proposed that combines two measures of Fe oxidation state taken from different parts of the spectrum to iteratively correct for an unknown energy offset between spectra, showing successful iterative self-calibration not only during individual beam time but also across different beamlines.
|
Nov 2019
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[9446, 9456]
Abstract: Mantle oxygen fugacity (fO2) governs the physico-chemical evolution of the Earth, however current estimates from commonly used basalt redox proxies are often in disagreement. In this study we compare three different potential basalt fO2 proxies: Fe3+/Fetot, V/Sc and V isotopes, determined on the same submarine lavas from a 700 km section of the Reykjanes Ridge, near Iceland. These samples provide a valuable test of the sensitivities of fO2 proxies to basalt petrogenesis, as they formed at different melting conditions and from a mantle that towards Iceland exhibits increasing long-term enrichment of incompatible elements. New trace element data were determined for 63 basalts with known Fe3+/Fetot. A subset of 19 lavas, covering the geographical spread of the ridge transect, was selected for vanadium isotope analyses.
Vanadium is a multi-valence element whose isotopic fractionation is theoretically susceptible to redox conditions. Yet, the
δ51
VAA composition of basaltic glasses along the Reykjanes Ridge covers only a narrow range (
δ51
VAA = −1.09 to −0.86‰; 1SD = 0.02–0.09) and does not co-vary with fractionation-corrected Fe3+/Fetot (0.134–0.151; 1SD = 0.005) or V/Sc (6.6–8.5; 1SD = 0.1-1.3) ratios. However, on a global scale, basaltic
δ51
VAA may be controlled by the extent of melting. The V/Sc compositions of primitive (MgO > 7.5 wt%) basalts show no systematic change along the entire length of the Reykjanes Ridge. Typical peridotite melting models in which source Fe3+/Fetot is constant at 5% and that account for the increased mantle potential temperature nearer the plume center and the fO2 dependent partitioning of V, can reproduce the V/Sc data. However, while these melting models predict that basalt Fe3+/Fetot ratios should decrease with increasing mantle potential temperature towards Iceland, fractionation-corrected Fe3+/Fetot of Reykjanes Ridge lavas remain nearly constant over the ridge length. This discrepancy is explained by source heterogeneity, where an oxidized mantle pyroxenite component contributes to melting with increasing proximity to Iceland.
Comparison of observed and modeled Fe3+/Fetot indicate that source variation in fO2 is present under the Reykjanes Ridge, with higher Fe3+/Fetot closer to Iceland. This source variability in fO2 cannot be resolved by V isotopes and redox-sensitive trace element ratios, which instead appear to record magmatic processes.
|
Dec 2019
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[12303]
Open Access
Abstract: Microcalcifications are important diagnostic indicators of disease in breast tissue. Tissue microenvironments differ in many aspects between normal and cancerous cells, notably extracellular pH and glycolytic respiration. Hydroxyapatite microcalcification microstructure is also found to differ between tissue pathologies, including differential ion substitutions and the presence of additional crystallographic phases. Distinguishing between tissue pathologies at an early stage is essential to improve patient experience and diagnostic accuracy, leading to better disease outcome. This study explores the hypothesis that microenvironment features may become immortalised within calcification crystallite characteristics thus becoming indicators of tissue pathology. In total, 55 breast calcifications incorporating 3 tissue pathologies (benign – B2, ductal carcinoma in-situ - B5a and invasive malignancy - B5b) from archive formalin-fixed paraffin-embedded core needle breast biopsies were analysed using X-ray diffraction. Crystallite size and strain were determined from 548 diffractograms using Williamson-Hall analysis. There was an increased crystallinity of hydroxyapatite with tissue malignancy compared to benign tissue. Coherence length was significantly correlated with pathology grade in all basis crystallographic directions (P < 0.01), with a greater difference between benign and in situ disease compared to in-situ disease and invasive malignancy. Crystallite size and non-uniform strain contributed to peak broadening in all three pathologies. Furthermore, crystallite size and non-uniform strain normal to the basal planes increased significantly with malignancy (P < 0.05). Our findings support the view that tissue microenvironments can influence differing formation mechanisms of hydroxyapatite through acidic precursors, leading to differential substitution of carbonate into the hydroxide and phosphate sites, causing significant changes in crystallite size and non-uniform strain.
|
Dec 2019
|
|
I18-Microfocus Spectroscopy
|
Azhaar
Ashraf
,
Christos
Michaelides
,
Thomas A.
Walker
,
Antigoni
Ekonomou
,
Maria
Suessmilch
,
Achvini
Sriskanthanathan
,
Semhar
Abraha
,
Adam
Parkes
,
Harold G.
Parkes
,
Kalotina
Geraki
,
Po-wah
So
Diamond Proposal Number(s):
[9304, 10615]
Open Access
Abstract: Microglia and astrocytes can quench metal toxicity to maintain tissue homeostasis, but with age, increasing glial dystrophy alongside metal dyshomeostasis may predispose the aged brain to acquire neurodegenerative diseases. The aim of the present study was to investigate age-related changes in brain metal deposition along with glial distribution in normal C57Bl/6J mice aged 2-, 6-, 19- and 27-months (n = 4/age). Using synchrotron-based X-ray fluorescence elemental mapping, we demonstrated age-related increases in iron, copper, and zinc in the basal ganglia (p < 0.05). Qualitative assessments revealed age-associated increases in iron, particularly in the basal ganglia and zinc in the white matter tracts, while copper showed overt enrichment in the choroid plexus/ventricles. Immunohistochemical staining showed augmented numbers of microglia and astrocytes, as a function of aging, in the basal ganglia (p < 0.05). Moreover, qualitative analysis of the glial immunostaining at the level of the fimbria and ventral commissure, revealed increments in the number of microglia but decrements in astroglia, in older aged mice. Upon morphological evaluation, aged microglia and astroglia displayed enlarged soma and thickened processes, reminiscent of dystrophy. Since glial cells have major roles in metal metabolism, we performed linear regression analysis and found a positive association between iron (R2 = 0.57, p = 0.0008), copper (R2 = 0.43, p = 0.0057), and zinc (R2 = 0.37, p = 0.0132) with microglia in the basal ganglia. Also, higher levels of iron (R2 = 0.49, p = 0.0025) and zinc (R2 = 0.27, p = 0.040) were correlated to higher astroglia numbers. Aging was accompanied by a dissociation between metal and glial levels, as we found through the formulation of metal to glia ratios, with regions of basal ganglia being differentially affected. For example, iron to astroglia ratio showed age-related increases in the substantia nigra and globus pallidus, while the ratio was decreased in the striatum. Meanwhile, copper and zinc to astroglia ratios showed a similar regional decline. Our findings suggest that inflammation at the choroid plexus, part of the blood-cerebrospinal-fluid barrier, prompts accumulation of, particularly, copper and iron in the ventricles, implying a compromised barrier system. Moreover, age-related glial dystrophy/senescence appears to disrupt metal homeostasis, likely due to induced oxidative stress, and hence increase the risk of neurodegenerative diseases.
|
Dec 2019
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[13025]
Abstract: We present a simple two step process for the fabrication of single crystal germanium core optical fibers. The core material is deposited into a capillary in a highly polycrystalline state using the pressure assisted filling technique. The cores are then melted and recrystallized in single crystal form using a scanning CO2 laser process. This technique is far quicker than the high pressure chemical deposition technique and overcomes all of the oxygen in-diffusion issues associated with the molten core drawing technique. We produce small core fiber 1 lm radii and length in the cm regime. It is anticipated that this process can be be optimized so that sub-micron cores can be produced to create fibers that have single-mode operation.
|
Dec 2019
|
|