I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[11412]
Open Access
Abstract: Neptunium and uranium are important radionuclides in many aspects of the nuclear fuel cycle and are often present in radioactive wastes which require long term management. Understanding the environmental behaviour and mobility of these actinides is essential in underpinning remediation strategies and safety assessments for wastes containing these radionuclides. By combining state-of-the-art X-ray techniques (synchrotron-based Grazing Incidence XAS, and XPS) with wet chemistry techniques (ICP-MS, liquid scintillation counting and UV-Vis spectroscopy), we determined that contrary to uranium(VI), neptunium(V) interaction with magnetite is not significantly affected by the presence of bicarbonate. Uranium interactions with a magnetite surface resulted in XAS and XPS signals dominated by surface complexes of U(VI), while neptunium on the surface of magnetite was dominated by Np(IV) species. UV-Vis spectroscopy on the aqueous Np(V) species before and after interaction with magnetite showed different speciation due to the presence of carbonate. Interestingly, in the presence of bicarbonate after equilibration with magnetite, an unknown aqueous NpO2+ species was detected using UV-Vis spectroscopy, which we postulate is a ternary complex of Np(V) with carbonate and (likely) an iron species. Regardless, the Np speciation in the aqueous phase (Np(V)) and on the magnetite (111) surfaces (Np(IV)) indicate that with and without bicarbonate the interaction of Np(V) with magnetite proceeds via a surface mediated reduction mechanism. Overall, the results presented highlight the differences between uranium and neptunium interaction with magnetite, and reaffirm the potential importance of bicarbonate present in the aqueous phase.
|
Feb 2019
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[12778, 15606]
Open Access
Abstract: The surface of many Old Master paintings has been affected by the appearance of whitish lead-rich deposits, which are often difficult to fully characterise, thereby hindering conservation. A paint micro-sample from Rembrandt's Homer was imaged using X-ray Diffraction Computed Tomography (XRD-CT) in order to understand the evolving solid-state Pb chemistry from the painting surface and beneath. The surface crust was identified as a complex mixture of lead sulfates. From the S[thin space (1/6-em)]:[thin space (1/6-em)]Pb ratios throughout the paint layer, we can conclude that S is from an external source in the form of SO2, and that the nature of Pb–SO4 product is dependent on the degree of diffusion/absorption of SO2 into the paint layers.
|
Jan 2019
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[15129, 19516]
Abstract: The complexity and heterogeneity of bone chemistry makes it difficult to discern information on physiological and taphonomic processes stored within the bone matrix. Analysis of archaeological and palaeontological bone becomes more difficult because in many cases the most pivotal specimens are too scientifically valuable for destructive analysis. This problem is further escalated by the fact that the heterogeneity of the bone may cause small “pockets” of preservation that can be missed during sampling. Therefore, a non-destructive technique that can spatially resolve such heterogeneity within the bone is needed. Here we use microfocus, non-destructive synchrotron-based X-Ray Fluorescence (XRF) imaging and X-ray Absorption Spectroscopy (XAS) to map the organic constituents within extant and fossil bovid bones. XAS analysis of sulfur allowed organic sulfur (within collagen as methionine) to be distinguished from inorganic sulfate (within bone apatite). Mapping and quantification of organic sulfur within the samples were made by setting the beam to the methionine resonance, allowing for the detection, distribution and quantification of collagen present by using organic sulfur as an internal marker. Results show organic sulfur to be distributed in small “pockets” throughout the bone matrix in both extant and fossil specimens. Significant loss of collagen (organic sulfur) was seen in specimens between 100 ka and 650 ka with little organic sulfur preservation persisting after this date. Comparison of residual organic sulfur concentrations as a function of sample age revealed a second order rate law for organic sulfur oxidation (k ≈ 1 × 10−5 y−1) within bone. These results show that non-destructive, synchrotron-based XRF mapping of organic sulfur is a useful tool for not only calculating rates of collagen degradation through time, but also identifying areas of potential collagen preservation for other paleobiological applications such as proteomics and stable isotope analyses.
|
Jan 2019
|
|
I18-Microfocus Spectroscopy
|
Chang
Guo
,
Sarah
Robertson
,
Ralf J. M.
Weber
,
Alison
Buckley
,
James
Warren
,
Alan
Hodgson
,
Joshua Z.
Rappoport
,
Konstantin
Ignatyev
,
Kirsty
Meldrum
,
Isabella
Römer
,
Sameirah
Macchiarulo
,
James Kevin
Chipman
,
Tim
Marczylo
,
Martin O.
Leonard
,
Timothy W.
Gant
,
Mark R.
Viant
,
Rachel
Smith
Diamond Proposal Number(s):
[12583]
Open Access
Abstract: Cerium oxide nanoparticles (CeO2NPs), used in some diesel fuel additives to improve fuel combustion efficiency and exhaust filter operation, have been detected in ambient air and concerns have been raised about their potential human health impact. The majority of CeO2NP inhalation studies undertaken to date have used aerosol particles of larger sizes than the evidence suggests are emitted from vehicles using such fuel additives. Hence, the objective of this study was to investigate the effects of inhaled CeO2NP aerosols of a more environmentally relevant size, utilizing a combination of methods, including untargeted multi-omics to enable the broadest possible survey of molecular responses and synchrotron X-ray spectroscopy to investigate cerium speciation. Male Sprague–Dawley rats were exposed by nose-only inhalation to aerosolized CeO2NPs (mass concentration 1.8 mg/m3, aerosol count median diameter 40 nm) for 3 h/d for 4 d/week, for 1 or 2 weeks and sacrificed at 3 and 7 d post-exposure. Markers of inflammation changed significantly in a dose- and time-dependent manner, which, combined with results from lung histopathology and gene expression analyses suggest an inflammatory response greater than that seen in studies using micron-sized ceria aerosols. Lipidomics of lung tissue revealed changes to minor lipid species, implying specific rather than general cellular effects. Cerium speciation analysis indicated a change in Ce3+/Ce4+ ratio within lung tissue. Collectively, these results in conjunction with earlier studies emphasize the importance of aerosol particle size on toxicity determination. Furthermore, the limited effect resolution within 7 d suggested the possibility of longer-term effects.
|
Feb 2019
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[1125, 7453]
Open Access
Abstract: Background: Chemical imaging of the human brain has great potential for diagnostic and monitoring purposes. The heterogeneity of human brain iron distribution, and alterations to this distribution in Alzheimer’s disease, indicate iron as a potential endogenous marker. The influence of iron on certain magnetic resonance imaging (MRI) parameters increases with magnetic field, but is under-explored in human brain tissues above 7 T. New Method: Magnetic resonance microscopy at 9.4 T is used to calculate parametric images of chemically-unfixed post-mortem tissue from Alzheimer’s cases (n = 3) and healthy controls (n = 2). Iron-rich regions including caudate nucleus, putamen, globus pallidus and substantia nigra are analysed prior to imaging of total iron distribution with synchrotron X-ray fluorescence mapping. Iron fluorescence calibration is achieved with adjacent tissue blocks, analysed by inductively coupled plasma mass spectrometry or graphite furnace atomic absorption spectroscopy. Results: Correlated MR images and fluorescence maps indicate linear dependence of R2, R2* and R2’ on iron at 9.4 T, for both disease and control, as follows: [R2(s−1) = 0.072[Fe] + 20]; [R2*(s−1) = 0.34[Fe] + 37]; [R2’(s−1) = 0.26[Fe] + 16] for Fe in μg/g tissue (wet weight). Comparison with Existing Methods: This method permits simultaneous non-destructive imaging of most bioavailable elements. Iron is the focus of the present study as it offers strong scope for clinical evaluation; the approach may be used more widely to evaluate the impact of chemical elements on clinical imaging parameters. Conclusion: The results at 9.4 T are in excellent quantitative agreement with predictions from experiments performed at lower magnetic fields.
|
Mar 2019
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[1946]
Open Access
Abstract: This study aims to highlight discrepancies between experimental and simulation linked to the mechanisms of Mo and V adsorption onto ferrihydrite (FHY) nanoparticles. We have measured adsorption capacities and uptake efficiencies and then fitted and compared these with outputs from various geochemical and adsorption models that were run as a function of pH, surface area (SA) and ferrihydrite particles size distributions. Our results revealed that the experimental data for the Mo system could be fitted very well, but this was not the case for the V system, when a model default value for the SA of FHY of 600 m2 g−1 was used. The discrepancy in the results for the V system can be explained by the lack of specific V species and/or associated constants in databases and variation in software versions, which change the outputted chemical species. Our comparative results also confirm that any experimental variables used as modelling inputs need to be checked carefully prior to any modelling exercises.
|
Feb 2019
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[12005]
Abstract: The processes that control chemical weathering of bedrock in the deep critical zone at a mm-scale are still poorly understood, but may produce 100s of meters of regolith and substantial fluxes of silicate weathering products and thus may be important for modeling long-term, global CO2. Weathering controls are also difficult to ascertain, as laboratory determined dissolution rates tend to be 2-5 orders of magnitude faster than field determined dissolution rates. This study aims to establish (i) the incipient processes that control the chemical weathering of the Bisley bedrock and (ii) why weathering rates calculated for the watershed may differ from laboratory rates (iii) why rates may differ across different scales of measurement. We analyzed mineralogy, elemental chemistry, and porosity in thin sections of rock obtained from drilled boreholes using Scanning Electron Microscopy (SEM) with energy dispersive spectrometry, electron probe microanalysis, and synchrotron-based Micro X-ray Fluorescence (µXRF) and X-ray Absorption Near Edge Structure (XANES). Weathering ages were determined from U-series isotope analysis. Mineral specific dissolution rates were calculated from solid-state mineralogical gradients and weathering ages. Mineralogical and elemental transects across thin sections and SEM images indicate that trace pyrite is the first mineral to dissolve. Micro-XRF mapping at 2 µm resolution revealed sulfate in pore space adjacent to dissolving pyrite, indicating that the incipient reaction is oxidative. The oxidative dissolution of pyrite produces a low pH microenvironment that aids the dissolution of pyroxene and chlorite. The rate-limiting step of weathering advance, and therefore the creation of the critical zone in the Bisley watershed, is pyrite oxidation, despite the low abundance (∼0.5 vol %) of pyrite in the parent rock. The naturally determined dissolution rates presented here either approach, converge with, or in some cases exceed, rates from the literature that have been experimentally determined. The U-series weathering age data on the mm-scale integrates the weathering advance rate over the ∼4.2 ± 0.3 kyrs that the weathering rind took to form. The weathering advance rate calculated at a watershed scale (from stream chemistry data) represents a contemporary weathering advance rate, which compares well with that calculated for the weathering rind, suggesting that the Bisley watershed has been weathering at steady-state for the last ∼4 kyrs.
|
Feb 2018
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[13025]
Open Access
Abstract: We report the fabrication of low-loss, low temperature deposited polysilicon waveguides via laser crystallization. The process involves pre-patterning amorphous silicon films to confine the thermal energy during the crystallization phase, which helps to control the grain growth and reduce the heat transfer to the surrounding media, making it compatible with CMOS integration. Micro-Raman spectroscopy, Secco etching and X-ray diffraction measurements reveal the high crystalline quality of the processed waveguides with the formation of millimeter long crystal grains. Optical losses as low as 5.3 dB/cm have been measured, indicating their suitability for the development of high-density integrated circuits.
|
Feb 2019
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[9044, 9598]
Abstract: A detailed understanding of the mechanisms and effects of radiation damage in phyllosilicate minerals is a necessary component of the evaluation of the safety case for a deep geological disposal facility (GDF) for radioactive waste. Structural and chemical changes induced by α-particle damage will affect these mineral’s performance as a reactive barrier material (both in the near and far-field) over timescales relevant to GDF integrity. In this study, two examples of chlorite group minerals have been irradiated at α-particle doses comparable to those predicted to be experienced by the clay buffer material surrounding high level radioactive waste canisters. Crystallographic aberrations induced by the focused 4He2+ ion beam are revealed via high-resolution, microfocus X-ray diffraction mapping. Interlayer collapse by up to 0.5 Å is prevalent across both macro- and micro-crystalline samples, with the macro-crystalline specimen displaying a breakdown of the phyllosilicate structure into loosely-connected, multi-oriented crystallites displaying variable lattice parameters. The damaged lattice parameters suggest a localised breakdown and collapse of the OH- rich, ‘brucite-like’ interlayer. Microfocus Fe K-edge X-ray absorption spectroscopy illustrates this defect accumulation, manifest as a severe damping of the X-ray absorption edge. Subtle Fe2+/Fe3+ speciation changes are apparent across the damaged structures. A trend towards Fe reduction is evident at depth in the damaged structures at certain doses (8.76 x 1015 alpha particles/ cm2). Interestingly, this reductive trend does not increase with radiation dose, indeed at the maximum dose (1.26 x 1016 alpha particles/ cm2) administered in this study, there is evidence for a slight increase in Fe binding energy, suggesting the development of a depth-dependant redox gradient concurrent with light ion damage. At the doses examined here, these damaged structures are likely highly reactive, as sorption capacity will, to an extent, be largely enhanced by lattice disruption and an increase in available ‘edge’ sites.
|
Feb 2019
|
|
I18-Microfocus Spectroscopy
|
Paul A.
Wallace
,
Sarah
Henton De Angelis
,
Adrian J.
Hornby
,
Jackie E.
Kendrick
,
Stephen
Clesham
,
Felix W.
Von Aulock
,
Amy
Hughes
,
James
E. P. Utley
,
Takehiro
Hirose
,
Donald B.
Dingwell
,
Yan
Lavallee
Diamond Proposal Number(s):
[9220]
Abstract: Volcanic environments often represent structurally active settings where strain localisation can promote faulting, frictional deformation, and subsequent melting along fault planes. Such frictional melting is thermodynamically a disequilibrium process initiated by selective melting of individual mineral phases and softening of volcanic glass at its glass transition as a response to rapid frictional heating. The formation of a thin melt layer on a fault plane surface can drastically accelerate or terminate slip during fault motion. A comprehensive understanding of the physical and chemical properties of the frictional melt is required for a full assessment of slip mechanism, as frictional rheology depends on the contributions from selectively melted mineral and glass phases as well as the physical effects of restite fragments suspended in the frictional melt. Here, we experimentally investigate the impact of host-rock mineralogy on the compositional and textural evolution of a frictional melt during slip. High-velocity rotary shear (HVR) experiments were performed under controlled, volcanically relevant, coseismic conditions (1 m s−1 slip rate and 1 MPa normal stress) using three intermediate dome lavas with contrasting mineral assemblages, sampled from volcanic systems where fault friction is evident: (1) an amphibole-bearing andesite (Soufrière Hills Volcano, Montserrat); (2) an amphibole-poor dacite (Santiaguito dome complex, Guatemala); and (3) an amphibole-free andesite (Volcán de Colima, Mexico). For each sample, five HVR experiments were terminated at different stages of frictional melt evolution, namely: (1) at the onset of melting and (2) formation of a steady-state melt layer; and (3) after 5 m, (4) 10 m, and (5) 15 m of slip at steady-state conditions. Progressive mixing and homogenisation of selective, single-phase melts within the frictional melt layer through double-diffusion convection demonstrates the dependence of melt composition on slip behaviour. Amphiboles melted preferentially, leading to lower shear stress (∼1 MPa) and pronounced shear weakening during the frictional melting of amphibole-bearing lavas. The results highlight the implications of mineral assemblage on volcanic conduit flow processes, which may influence the explosivity of eruptions, and run-out distances of rapid granular flows.
|
Apr 2019
|
|