I18-Microfocus Spectroscopy
|
Thomas
Christiansen
,
Marine
Cotte
,
Wout
De Nolf
,
Elouan
Mouro
,
Juan
Reyes-herrera
,
Steven
De Meyer
,
Frederik
Vanmeert
,
Nati
Salvado
,
Victor
Gonzalez
,
Poul Erik
Lindelof
,
Kell
Mortensen
,
Kim
Ryholt
,
Koen
Janssens
,
Sine
Larsen
Diamond Proposal Number(s):
[23348]
Open Access
Abstract: A hitherto unknown composition is highlighted in the red and black inks preserved on ancient Egyptian papyri from the Roman period (circa 100 to 200 CE). Synchrotron-based macro–X-ray fluorescence (XRF) mapping brings to light the presence of iron (Fe) and lead (Pb) compounds in the majority of the red inks inscribed on 12 papyrus fragments from the Tebtunis temple library. The iron-based compounds in the inks can be assigned to ocher, notably due to the colocalization of Fe with aluminum, and the detection of hematite (Fe2O3) by micro–X-ray diffraction. Using the same techniques together with micro-Fourier transform infrared spectroscopy, Pb is shown to be associated with fatty acid phosphate, sulfate, chloride, and carboxylate ions. Moreover, micro-XRF maps reveal a peculiar distribution and colocalization of Pb, phosphorus (P), and sulfur (S), which are present at the micrometric scale resembling diffused “coffee rings” surrounding the ocher particles imbedded in the red letters, and at the submicrometric scale concentrated in the papyrus cell walls. A similar Pb, P, and S composition was found in three black inks, suggesting that the same lead components were employed in the manufacture of carbon-based inks. Bearing in mind that pigments such as red lead (Pb3O4) and lead white (hydrocerussite [Pb3(CO3)2(OH)2] and/or cerussite [PbCO3]) were not detected, the results presented here suggest that the lead compound in the ink was used as a drier rather than as a pigment. Accordingly, the study calls for a reassessment of the composition of lead-based components in ancient Mediterranean pigments.
|
Oct 2020
|
|
I18-Microfocus Spectroscopy
|
Antonios
Vamvakeros
,
Dorota
Matras
,
Simon D. M.
Jacques
,
Marco
Di Michiel
,
Stephen W. T.
Price
,
Pierre
Senecal
,
Miren
Agote Aran
,
Vesna
Middelkoop
,
Gavin B. G.
Stenning
,
J. Frederick W.
Mosselmans
,
Ilyas Z.
Ismagilov
,
Andrew M.
Beale
Diamond Proposal Number(s):
[14525]
Abstract: In this work, we present the results from multi-length-scale studies of a Mn-Na-W/SiO2 and a La-promoted Mn-Na-W/SiO2 catalyst during the oxidative coupling of methane reaction. The catalysts were investigated from the reactor level (mm scale) down to the single catalyst particle level (μm scale) with different synchrotron X-ray chemical computed tomography techniques (multi-modal chemical CT experiments). These operando spatially-resolved studies performed with XRD-CT (catalytic reactor) and multi-modal μ-XRF/XRD/absorption CT (single catalyst particle) revealed the multiple roles of the La promoter and how it provides the enhancement in catalyst performance. It is also shown that non-crystalline Mn species are part of the active catalyst component rather than crystalline Mn2O3/Mn7SiO12 or MnWO4.
|
Jun 2020
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[15802]
Open Access
Abstract: Bacteria acquire phosphate (Pi) by maintaining a periplasmic concentration below environmental levels. We recently described an extracellular Pi buffer which appears to counteract the gradient required for Pi diffusion. Here, we demonstrate that various treatments to outer membrane (OM) constituents do not affect the buffered Pi because bacteria accumulate Pi in the periplasm, from which it can be removed hypo-osmotically. The periplasmic Pi can be gradually imported into the cytoplasm by ATP-powered transport, however, the proton motive force (PMF) is not required to keep Pi in the periplasm. In contrast, the accumulation of Pi into the periplasm across the OM is PMF-dependent and can be enhanced by light energy. Because the conventional mechanism of Pi-specific transport cannot explain Pi accumulation in the periplasm we propose that periplasmic Pi anions pair with chemiosmotic cations of the PMF and millions of accumulated Pi pairs could influence the periplasmic osmolarity of marine bacteria.
|
May 2020
|
|
I18-Microfocus Spectroscopy
|
M.
Bourdenx
,
A.
Nioche
,
S.
Dovero
,
M.-l.
Arotcarena
,
S.
Camus
,
G.
Porras
,
M.-l.
Thiolat
,
N. P.
Rougier
,
A.
Prigent
,
P.
Aubert
,
S.
Bohic
,
C.
Sandt
,
F.
Laferrière
,
E.
Doudnikoff
,
N.
Kruse
,
B.
Mollenhauer
,
S.
Novello
,
M.
Morari
,
T.
Leste-lasserre
,
I. Trigo
Damas
,
M.
Goillandeau
,
C.
Perier
,
C.
Estrada
,
N.
Garcia-carrillo
,
A.
Recasens
,
N. N.
Vaikath
,
O. M. A.
El-agnaf
,
M. T.
Herrero
,
P.
Derkinderen
,
M.
Vila
,
J. A.
Obeso
,
B.
Dehay
,
E.
Bezard
Diamond Proposal Number(s):
[13009]
Open Access
Abstract: Dopaminergic neuronal cell death, associated with intracellular α-synuclein (α-syn)–rich protein aggregates [termed “Lewy bodies” (LBs)], is a well-established characteristic of Parkinson’s disease (PD). Much evidence, accumulated from multiple experimental models, has suggested that α-syn plays a role in PD pathogenesis, not only as a trigger of pathology but also as a mediator of disease progression through pathological spreading. Here, we have used a machine learning–based approach to identify unique signatures of neurodegeneration in monkeys induced by distinct α-syn pathogenic structures derived from patients with PD. Unexpectedly, our results show that, in nonhuman primates, a small amount of singular α-syn aggregates is as toxic as larger amyloid fibrils present in the LBs, thus reinforcing the need for preclinical research in this species. Furthermore, our results provide evidence supporting the true multifactorial nature of PD, as multiple causes can induce a similar outcome regarding dopaminergic neurodegeneration.
|
May 2020
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[9914, 18747]
Abstract: Magmatic systems are dominated by five volatiles, namely H2O, CO2, F, Cl, and S (the igneous quintet). Multiple studies have measured partitioning of four out of these five volatiles (H2O, CO2, F, and Cl) between nominally volatile-free minerals and melts, whereas the partitioning of sulfur is poorly known. To better constrain the behavior of sulfur in igneous systems we measured the partitioning of sulfur between clinopyroxene and silicate melts over a range of pressure, temperature, and melt composition from 0.8 to 1.2 GPa, 1000 to 1240 °C, and 49 to 66 wt% SiO2 (13 measurements). Additionally, we determined the crystal-melt partitioning of sulfur for plagioclase (6 measurements), orthopyroxene (2 measurements), amphibole (2 measurements), and olivine (1 measurement) in some of these same run products. Experiments were performed at high and low oxygen fugacities, where sulfur in the melt is expected to be dominantly present as an S6+ or an S2– species, respectively. When the partition coefficient is calculated as the total sulfur in the crystal divided by the total sulfur in the melt, the partition coefficient varies from 0.017 to 0.075 for clinopyroxene, from 0.036 to 0.229 for plagioclase, and is a maximum of 0.001 for olivine and of 0.003 for orthopyroxene. The variation in the total sulfur partition coefficient positively correlates with cation-oxygen bond lengths in the crystals; the measured partition coefficients increase in the order: olivine < orthopyroxene < clinopyroxene ≤ amphibole and plagioclase. At high oxygen fugacities in hydrous experiments, the clinopyroxene/melt partition coefficients for total sulfur are only approximately one-third of those measured in low oxygen fugacity, anhydrous experiments. However when the partition coefficient is calculated as total sulfur in the crystal divided by S2– in the melt, the clinopyroxene/melt partition coefficients for experiments with melts between ~51 and 66 wt% SiO2 can be described by a single mean value of 0.063 ± 0.010 (1σ standard deviation about the mean). These two observations support the hypothesis that sulfur, as S2–, replaces oxygen in the crystal structure. The results of hydrous experiments at low oxygen fugacity and anhydrous experiments at high oxygen fugacity suggest that oxygen fugacity has a greater effect on sulfur partitioning than water. Although the total sulfur clinopyroxene-melt partition coefficients are affected by the Mg/(Mg+Fe) ratio of the crystal, partition coefficients calculated using S2– in the melt display no clear dependence upon the Mg# of the clinopyroxene. Both the bulk and the S 2– partition coefficients appear unaffected by IVAl in the clinopyroxene structure. No effect of anorthite content nor of iron concentration in the crystal was seen in the data for plagioclase-melt partitioning. The data obtained for orthopyroxene and olivine were too few to establish any trends. The partition coefficients of total sulfur and S 2– between the crystals studied and silicate melts are typically lower than those of fluorine, higher than those of carbon, and similar to those of chlorine and hydrogen. These sulfur partition coefficients can be combined with analyses of volatiles in nominally volatile-free minerals and previously published partition coefficients of H2O, C, F, and Cl to constrain the concentration of the igneous quintet, the five major volatiles in magmatic systems.
|
May 2020
|
|
I18-Microfocus Spectroscopy
|
Open Access
Abstract: Purpose : The purpose of this study was to investigate the distribution of Ca, Fe and Zn using X-ray fluorescence in human RPE/Bruch’s membrane/choroid with and without early AMD.
Methods : We used a set of unfixed frozen human retinal pigment epithelium (RPE)/choroid samples from young (n=1, female aged 34) and aged donors with (n=4, males, aged 73-78) and without (n=3, one female, aged 75-77) early AMD from Manchester Eye Tissue Repository. Using X-ray fluorescence microscopy (I18 Diamond light source, UK) with a 2 um beam, we obtained high-resolution Ca, Zn, Fe, sulphur, potassium, chloride and phosphorus maps covering areas up to 100 x 600 um2 of 30 um thick sections placed on quartz holders and scanned at room temperature
Results : Calcification was observed in the 3 groups. In the 34-year old sample, sparse small Ca spherules (2x2 um2) at the RPE/Bruch’s membrane interface not colocalising with Zn or Fe. In aged samples, with and without AMD, calcified nodules within RPE cells, at RPE/Bruch’s membrane interface and within druse in AMD. Every calcified nodule colocalised with Zn. Quantification revealed two types (high Zn content, low Zn content). In aged donors without AMD, high-Zn calcified nodules with Ca concentration of 3083+1679 ppm (mean+SD) (maximum 12809+9311) and Zn 66+55 ppm (max 125+75). The average size was 27+15 um2. In aged samples with AMD, high-Zn calcified nodules with average Ca concentration of 4316+1723 ppm (max 13105+7563) and Zn 97+57 ppm (max 201+143). Size 26x10 um2. In the aged non-AMD group, the low zinc-calcification nodules contained an average Ca ppm of 915+259 (max 1475+380) and Zn 33+18 ppm (max 40+21). The average size 28x16 um2. In the AMD group, the low Zn calcified nodules average Ca ppm 1544+1450 (max 3526+5289) and average Zn ppm 47+23 (max 64+37). Average size 19x10 um2. Calcified plaques in Bruch’s membrane from aged donors with and without AMD. Some of these plaques colocalised with Zn and also Fe. Fe-loaded structures in the choriocapillaris underlying calcified nodules and plaques.
Conclusions : Calcific nodules contain zinc in older eyes with and without AMD. Calcified nodules with lower amounts of Ca contained lower amounts of Zn, so the accumulation of Ca may occur in parallel to Zn. It is possible that iron-loaded structures in the choriocapillaris are macrophages.
|
Jun 2020
|
|
I18-Microfocus Spectroscopy
|
Open Access
Abstract: Sulphur is the third most abundant volatile element in deep Earth systems. Analytical methods for accurately and efficiently determining the sulphur content and oxidation state in natural minerals are still lacking. Natural apatite is widely distributed in the Earth and incorporates a large amount of sulphur. Therefore, apatite is an ideal mineral for performing sulphur measurements. Here, we used spectroscopic, Raman, X-ray diffraction, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), electron microprobe (EMPA) and micro-X-ray fluorescence spectrometry (micro-XRF) analysis techniques and developed a new analytical approach (i.e., micro-X-ray absorption near-edge structure (micro-XANES) analysis of the sulphur K-edge) to investigate the chemical characteristics of natural apatite. These multiple methods were developed to measure in situ sulphur concentration and S oxidation states and to assess a potential natural apatite reference material. Apatite contains chemically homogeneous sulphur, with micro-XANES located at the peak energies corresponding to S6+ (sulphate; ~2482 eV), S4+ (sulfite; ~2478 eV), and S2− (sulphide; ~2467, 2470 and 2474 eV). The Durango apatite contains total S presented as SO3 at amount of 0.332 ± 0.012 wt.% (1σ), with a large amount of S6+ and a small contribution of S4+. The Kovdor apatite contains 44–100 ppm of S and is dominated by S6+. These results indicate that the Durango apatite crystallised under relative oxidising conditions, and the Kovdor apatite has a higher oxygen fugacity than Durango. In addition, this study indicates the potential use of the natural apatite reference material with its S composition and S oxidation state.
|
Nov 2020
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[20316]
Abstract: Auriferous sulphide ores often incorporate micro-fine (or invisible) gold and silver particles in a manner making their extraction difficult. Nobel metals are lost in the tailings due to the refractory nature of these ores. Bioleaching is an environment-friendly alternative to the commonly used and toxic cyanidation protocols for gold extraction from refractory ores. In this paper, we investigate gold and silver bioleaching from porphyry and epithermal mineralisation systems, using iron-oxidizing bacteria Acidithiobacillus ferrooxidans. The invisible Au, sequestered in refractory ores, was characterised in situ by synchrotron micro X-Ray Fluorescence (SR-μ-XRF) and X-ray Absorption Spectroscopy (XAS), offering information on Au unaltered speciation at the atomistic level within the ore matrices and at a micro-scale spatial resolution. The SR-μ-XRF and XAS results showed that 10-20μm sized elemental Au(0) nuggets are sequestered in pyrite, chalcopyrite, arsenopyrite matrices and at the interface of a mixture of pyrite and chalcopyrite. Moreover, the preliminary bioleaching experiments of the two types of ores, showed that Acidithiobacillus ferrooxidans can catalyse the dissolution of natural heterogeneous Fe-rich geo-matrices, sequestering Au and Ag and releasing particulate phases or partially solubilising them within 60 days. These results provide an understanding of noble metal sequestration and speciation within natural ores and a demonstration of the application of synchrotron-based micro-analysis in characterizing economic trace metals in major mineral structures. This work is a contribution to the ongoing efforts towards finding feasible and greener solutions of noble metal extraction protocols.
|
Dec 2020
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[21717]
Abstract: Carbon steel is a universally used material in various transportation and construction industries. Research related to CO2 corrosion environments agrees on the occurrence of siderite (FeCO3) as a main product conforming corrosion films, suggested to impart protection to carbon steel. Identifying and understanding the presence of all corrosion products under certain conditions is of greatest importance to elucidate the behavior of corrosion films under operation conditions (e.g., flow, pH, temperature), but information regarding the nature and formation of other Fe corrosion products apart from FeCO3 is lacking. Corrosion products in CO2 environments typically consist of common Fe minerals that in nature have been demonstrated to undergo transformations, forming other Fe phases. This fact of nature has not been yet explored in the corrosion science field, which can help us to describe mechanisms associated with industrial processes. In this work, we present a multiscale and multidisciplinary approach to understand the mechanisms occurring on corrosion films under the key factors of flow and pH through the combination of molecular techniques with imaging. We report that certainly siderite (FeCO3, cylindrical with trigonal-pyramidal caps) is the main product identified under the conditions used (representative of brine transport at 80 °C), but wustite (FeO) and magnetite (Fe3O4) minerals also form, likely from the de-carbonation of FeCO3 → FeO → Fe3O4, depending on pH under the action of flow. These minerals exist across the corrosion films evidencing a more complex nature of the three-dimensional layer not currently accounted for in the mechanistic models. A relatively low flow velocity (1 m/s), as recognized for industrial operations, is enough to produce chemo-mechanical damage to the FeCO3 crystals, causing breakage at low pH where dissolution of FeCO3 occurs with a rapid crystal size reduction of the cylindrical FeCO3 geometry of ∼80% in just 8 h, changing also the local chemical structure of Fe3C under the film. Similarly, a flow velocity of 1 m/s is capable of inducing crystal removal at neutral pH, promoting further degradation of the steel, compromising the protectiveness assumption of FeCO3 corrosion films. The chemo-mechanical damage and Fe phase transformations will affect the critical localized corrosion, and therefore, they need to be accounted for in mechanistic models aiming to find new avenues for control and mitigation of carbon steel corrosion.
|
Jan 2021
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[20603]
Open Access
Abstract: Protein-based hybrid nanomaterials have recently emerged as promising platforms to fabricate tailored multifunctional biologics for biotechnological and biomedical applications. This work shows a simple, modular, and versatile strategy to design custom protein hybrid nanomaterials. This approach combines for the first time the engineering of a therapeutic protein module with the engineering of a nanomaterial-stabilizing module within the same molecule, resulting in a multifunctional hybrid nanocomposite unachievable through conventional material synthesis methodologies. As the first proof of concept, a multifunctional system was designed ad hoc for the therapeutic intervention and monitoring of myocardial fibrosis. This hybrid nanomaterial combines a designed Hsp90 inhibitory domain and a metal nanocluster stabilizing module resulting in a biologic drug labelled with a metal nanocluster. The engineered nanomaterial actively reduced myocardial fibrosis and heart hypertrophy in an animal model of cardiac remodeling. In addition to the therapeutic effect, the metal nanocluster allowed for in vitro, ex vivo, and in vivo detection and imaging of the fibrotic disease under study. This study evidences the potential of combining protein engineering and protein-directed nanomaterial engineering approaches to design custom nanomaterials as theranostic tools, opening up unexplored routes to date for the next generation of advanced nanomaterials in medicine.
|
Dec 2020
|
|