I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[18676]
Abstract: The in-situ formation of lead-sulfur inorganic compounds in historical oil paintings can have a strong detrimental effect on an artwork’s physical and visual integrity. In this paper, paint micro-samples collected from several paintings from the Rijksmuseum (Amsterdam) and Mauritshuis (The Hague) collections were probed at the micro-scale using a combination of synchrotron micro-XRD and XRD-CT. This permitted to precisely identify the chemical nature of the in-situ formed crystalline compounds as well as to chart their distribution within paint layers at the microscopic level. This provided new information on the origin of the ions involved in the crystallization of the various newly formed mineral lead-sulfur products. The formation of palmierite K2Pb(SO4)2, anglesite PbSO4 and lanarkite Pb2(SO4)O in historical samples can thus be connected to paint stratigraphic build-up, environmental conditions and potential past restoration treatments.
|
Jul 2020
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[17819]
Abstract: The use of solar energy to activate chemical pathways in a sustainable manner drives the development in photocatalysis. While catalyst optimisation is a major theme in this pursuit, the development of novel photocatalytic reactors to enhance productivity is also imperative. In this work we combine, for the first time, microstructured optical fibre technology with photocatalysis, creating a photocatalytic microreactor coated with titania decorated with palladium nanoparticles. By doing so, we can create a system capable of effectively combining photons, liquids and gases within a monolithic, highly confined, transparent silica geometry. We utilise a range of characterisation techniques to selectively focus on the photocatalyst that resides exclusively within the internal capillaries of this system. In doing so we validate our design approach, and demonstrate the ability to simultaneously control both nanoparticle size and metal content. Further, we justify our unique design, showing its activity in photocatalytic hydrogen generation from water. In doing so highlighting the importance in developing light propagation properties from optical fibres, and the significant potential of this technology in the expansive photocatalysis landscape.
|
Feb 2020
|
|
I18-Microfocus Spectroscopy
|
Open Access
Abstract: Iron is an essential element, and cornflake-style cereals are typically fortified with iron to a level up to 14 mg iron per 100 g. Even single cornflakes exhibit magnetic behaviour. We extracted iron microparticles from samples of two own-brand supermarket cornflakes using a strong permanent magnet. Synchrotron iron K-edge X-ray absorption near-edge spectroscopic data were consistent with identification as metallic iron, and X-ray diffraction studies provided unequivocal identification of the extracted iron as body-centred cubic (BCC) α-iron. Magnetometry measurements were also consistent with ca. 14 mg per 100 g BCC iron. These findings emphasise that attention must be paid to the speciation of trace elements, in relation to their bioavailability. To mimic conditions in the stomach, we suspended the iron extract in dilute HCl (pH 1.0–2.0) at 310 K (body temperature) and found by ICP-MS that over a period of 5 hours, up to 13% of the iron dissolved. This implies that despite its metallic form in the cornflakes, the iron is potentially bioavailable for oxidation and absorption into the body.
|
Mar 2020
|
|
I18-Microfocus Spectroscopy
|
Open Access
Abstract: The first experimental results from a new transmissive diagnostic instrument for synchrotron X-ray beamlines are presented. The instrument utilizes a single-crystal chemical-vapour-deposition diamond plate as the detector material, with graphitic wires embedded within the bulk diamond acting as electrodes. The resulting instrument is an all-carbon transmissive X-ray imaging detector. Within the instrument's transmissive aperture there is no surface metallization that could absorb X-rays, and no surface structures that could be damaged by exposure to synchrotron X-ray beams. The graphitic electrodes are fabricated in situ within the bulk diamond using a laser-writing technique. Two separate arrays of parallel graphitic wires are fabricated, running parallel to the diamond surface and perpendicular to each other, at two different depths within the diamond. One array of wires has a modulated bias voltage applied; the perpendicular array is a series of readout electrodes. X-rays passing through the detector generate charge carriers within the bulk diamond through photoionization, and these charge carriers travel to the nearest readout electrode under the influence of the modulated electrical bias. Each of the crossing points between perpendicular wires acts as an individual pixel. The simultaneous read-out of all pixels is achieved using a lock-in technique. The parallel wires within each array are separated by 50 µm, determining the pixel pitch. Readout is obtained at 100 Hz, and the resolution of the X-ray beam position measurement is 600 nm for a 180 µm size beam.
|
May 2020
|
|
I18-Microfocus Spectroscopy
|
Abstract: We report on the alteration history of the olivine-phyric, highly depleted (HD) shergottite, Northwest Africa (NWA) 10416, paying particular attention to the origin of the aqueous alteration seen affecting the meteorite’s olivine megacrysts. The rock’s interior displays 1 mm, zoned, altered olivine megacrysts set in a groundmass of clinopyroxene, unzoned olivine, and interstitial plagioclase and maskelynite. Synchrotron micro X-ray diffraction (µ-XRD) and transmission electron microscopy (TEM) show that plagioclase and maskelynite have been partially replaced by kaolinite. The relict olivine megacryst cores display a unique concentric colouration for Martian meteorites, having central amber-coloured zones surrounded by a brown mantle zone, with the rims remaining clear and unaltered. This colouration is a result of fluid alteration and partial replacement, with hydration. TEM analysis revealed the ∼200 nm scale banded and largely amorphous nature of the alteration, but with some (∼ 20%) relict crystalline olivine patches. Although the coloured olivine zones show cation and anion site vacancies compared to stoichiometric olivine, a relict igneous compositional trend is preserved in the megacrysts, from Mg-rich altered cores (Mg# = 76) to unaltered stoichiometric rims (Fo53). Synchrotron Fe-K X-ray absorption near-edge structure (XANES) analysis revealed that the coloured zones of the megacryst have different Fe oxidation values. High ferric contents are present in the brown mantle zones (Fe3+/ΣFe ≤ 0.92) and the amber zones (Fe3+/ΣFe ≤ 0.30), whereas the clear rims are ferrous. This suggests alteration occurred in an oxidising environment and that the sharp contrast in colour of the megacryst (brown to clear) is a record of a relict fluid reaction front.
In order to test the terrestrial or extraterrestrial origin of the alteration, olivine material from a shock-melt vein was analysed by TEM. The analysis revealed 0.952 nm curved d-spacing’s from clay alteration undisturbed by any shock effects, strongly suggesting a terrestrial origin. The d-spacing values most likely represent a collapsed saponite or vermiculite, showing that in some places olivine has been replaced by crystalline clay.
Oxygen isotope analysis of bulk (Δ17O = 0.309 ± 0.009 (2σ) ‰) and amber-coloured megacryst material (= 0.271 ± 0.002 (2σ) ‰), are also consistent with terrestrial alteration. We propose a model in which, during the meteorite’s time in Northwest Africa, low-temperature, likely acidic, groundwater exploited fractures. The fluid altered the olivine megacrysts in a way that was controlled by the pre-existing, igneous compositional zonation, with Mg-rich olivine being more susceptible to alteration in this fluid environment. The plagioclase and maskelynite were also altered to a high degree. After the alteration event it is likely that NWA 10416 had a significant residence time in Northwest Africa, accounting for terrestrial calcite and the dehydration of some clay phases.
|
Apr 2020
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[22876]
Abstract: Fly ash represents a promising alternative source of rare earth elements (REE). However, information on REE containing mineral phases and their association with other fly ash components, vital for REE recovery from fly ash, is currently lacking. Herein, the mass fraction, distribution, crystallography and solid-state chemistry of REE, U and Th in Nigerian simulated fly ash samples were characterised using a range of laboratory and synchrotron x-ray based analytical techniques to underpin future extraction methodologies. Inductively coupled plasma mass spectrometry following full-acid digest of forty-five samples revealed recoverable average total REE content which ranged between 442 mgkg−1and 625 mgkg−1, comprising over 30 wt% of the critical REE Nd, Eu, Tb, Dy, Y and Er. These REE within the fly ash samples were found to be most frequently associated with discrete monazite, xenotime and Y-bearing zircon mineral particles, with the former the most detected, which could be beneficiated through gravity separation. Analysis of monazite particles isolated from the composite samples through a complimentary suite of analytical synchrotron radiation techniques revealed a core-shell pattern, with the shell rich in colocalised Ce, Nd and La, and the core enrich in both U and Th. Ce in monazite was found to exist in a mixed trivalent and tetravalent oxidation state, with the monazite structure amorphized due to the high temperature combustion process. Such results demonstrate the strong co-association and physical distribution of REE, U and Th within monazite in fly ash; knowledge of which can subsequently be used to optimise or develop a more selective, cost-effective and environmentally friendly solvent extraction methodology, by targeting the strongly colocalised and surface bound REE in fly ash monazite particles.
|
Aug 2020
|
|
I18-Microfocus Spectroscopy
|
Anouk M.
Borst
,
Martin P.
Smith
,
Adrian
Finch
,
Guillaume
Estrade
,
Cristina
Villanova-de-benavent
,
Peter
Nason
,
Eva
Marquis
,
Nicola J.
Horsburgh
,
Kathryn M.
Goodenough
,
Cheng
Xu
,
Jindřich
Kynický
,
Kalotina
Geraki
Diamond Proposal Number(s):
[14793, 15903]
Open Access
Abstract: Global resources of heavy Rare Earth Elements (REE) are dominantly sourced from Chinese regolith-hosted ion-adsorption deposits in which the REE are inferred to be weakly adsorbed onto clay minerals. Similar deposits elsewhere might provide alternative supply for these high-tech metals, but the adsorption mechanisms remain unclear and the adsorbed state of REE to clays has never been demonstrated in situ. This study compares the mineralogy and speciation of REE in economic weathering profiles from China to prospective regoliths developed on peralkaline rocks from Madagascar. We use synchrotron X-ray absorption spectroscopy to study the distribution and local bonding environment of Y and Nd, as proxies for heavy and light REE, in the deposits. Our results show that REE are truly adsorbed as easily leachable 8- to 9-coordinated outer-sphere hydrated complexes, dominantly onto kaolinite. Hence, at the atomic level, the Malagasy clays are genuine mineralogical analogues to those currently exploited in China.
|
Dec 2020
|
|
I18-Microfocus Spectroscopy
|
Abstract: The hallmark of neurodegenerative disease in humans, including Alzheimer’s, Amyotrophic Lateral Sclerosis and Parkinson’s, lies in our inability to efficiently restore damaged neurons. Contrary to widespread belief, humans can regenerate neurons within the Peripheral Nervous System (PNS) and some areas of the Central Nervous System (CNS), however the underlying mechanisms which drive or repress complete functional and structural neuronal regeneration remain elusive. To develop our understanding of this natural phenomenon one should focus on species which are capable of efficient neuronal regeneration following neurotrauma. The earthworm species Eisenia fetida can regenerate their Cerebral Ganglion (CG) - loosely defined as the brain, within a few weeks following surgical removal. The characterization of fundamental aspects of neuronal regeneration in the earthworm promises to provide an insight as to why humans have largely lost that capability. Here we present a detailed micro-dissection protocol that has been developed to excise the CG and study the progression of its regeneration. The Ventral Nerve Cord (VNC) of the worm is a tissue which connects the CG to the rest of the nervous system via the Circumpharyngeal Connectives (CC). Exploration of molecular dynamics through changes in the transcriptome were determined in the VNC and CC at 1 week and 5-week post-decerebration using an RNAseq approach (90 million reads/condition, 100bp Paired End). RNAseq established that specific groups of genes are up- or downregulated in the regenerating VNC. More than 500 significantly enriched biological processes were identified throughout the regeneration process, including vascular development, neurogenesis and extracellular matrix organization, as well as more than 100 significantly enriched molecular functions, including calcium ion binding, metal ion binding and metalloendopeptidase activity. Differential expression of transcripts was confirmed via qPCR. Examples of transcripts which have been validated at 1w post-decerebration, include catalase (~34-fold), superoxide dismutase 1 (sod-1) (~12-fold) and transcription factor jun-B (junb) (~3-fold). On the other hand, examples of transcripts which have been validated at 5w post-decerebration, include Glial Fibrillary Acidic Protein (GFAP) (~101-fold), adam19 (~17-fold) and Bone Morphogenetic Protein 1 (BMP1) (~3-fold). Moreover, the large number of differentially expressed metalloproteins (ADAMs, BMPs, MMPs, metallothionein) identified in the transcriptome, led to the hypothesis that metal trafficking could play a role in the course of regeneration. This was confirmed using a synchrotron-based approach, namely X-Ray Fluorescence (XRF) spectroscopy, where Zinc (Zn) and Iron (Fe) show a differential distribution pattern across different stages (at 1 week to 10-weeks post-decerebration) of regeneration. Lastly, various histological techniques were implemented to characterize/describe neuronal structures during the regenerating process, including immunohistochemistry and Terminal deoxynucleotidyl transferase dUTP Nick End Labeling (TUNEL). Furthermore, numerous novel markers and biological processes have been identified which, to date, have not been linked to neuronal regeneration. In summary, the results suggest that the increase of axon growth promoting factors as well the decrease of growth inhibitory factors act in conjunction to ensure efficient neuronal regeneration in the earthworm.
|
Mar 2020
|
|
I18-Microfocus Spectroscopy
|
Abstract: Sulfur is a key volatile element in magmatic systems that exists in many phases (e.g. melt or gas), in multiple-oxidation states (S²⁻, S⁴⁺ and S⁶⁺), and has more than one stable isotope (e.g. ³²S and ³⁴S). Therefore, by measuring S, information regarding the conditions of a magma can be acquired. The aim of this work is to investigate what S can tell us about the behaviour of late-stage lunar basaltic magmas. An analytical protocol was developed to simultaneously measure S and Cl abundances and isotopes of lunar apatite in eleven lunar basalts with nano-scale secondary ion mass spectrometry (NanoSIMS). Additionally, a method was developed to measure the oxidation state of S in apatites of five mare basalts with X-ray absorption near-edge structure (XANES) spectroscopy at the S K-edge, making it possible to compare S oxidation state and S isotopes of lunar apatite for the first time.
Lunar apatites contain ~20–2,800 ppm S, with δ³⁴S values between -33.3 ± 3.8‰ and +36.4 ± 3.2‰ (2σ). The Cl abundance is ~350–7,230 ppm, with δ³⁷Cl values of +6.5‰ ± 0.9‰ to +36.5‰ ± 1.1‰ (2σ). All of the apatites have S⁶⁺/ΣS(tot) ratios of >0, with average S⁶⁺/ΣS(tot) values between 0.05 and 0.55.
An absence of correlation between S and Cl isotopes suggests a lack of evolutionary relationship between S and KREEP-rich components. The direction of S isotope fractionation, negative or positive, can be explained by degassing of H₂S and SO₂ from a relatively reduced (S²⁻) or oxidized (SO₄²⁻) late-stage silicate melt, respectively. The historical existence of relatively oxidized late-stage silicate melts is also evidenced by the presence of S⁶⁺ in lunar apatite. A positive trend is apparent between S⁶⁺/ΣS(tot) and δ³⁴S which is indicative of the dependence of S isotope fractionation on the oxygen fugacity of the late-stage silicate melt.
|
Jul 2020
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[7254]
Open Access
Abstract: In this work, the effects of the protozoan Neospora caninum on the bioenergetics, chemical composition, and elemental content of human brain microvascular endothelial cells (hBMECs) were investigated. We showed that N. caninum can impair cell mitochondrial (Mt) function and causes an arrest in host cell cycling at S and G2 phases. These adverse effects were also associated with altered expression of genes involved in Mt energy metabolism, suggesting Mt dysfunction caused by N. caninum infection. Fourier Transform Infrared (FTIR) spectroscopy analysis of hBMECs revealed alterations in the FTIR bands as a function of infection, where infected cells showed alterations in the absorption bands of lipid (2924 cm−1), amide I protein (1649 cm−1), amide II protein (1537 cm−1), nucleic acids and carbohydrates (1092 cm−1, 1047 cm−1, and 939 cm−1). By using quantitative synchrotron radiation X-ray fluorescence (μSR-XRF) imaging and quantification of the trace elements Zn, Cu and Fe, we detected an increase in the levels of Zn and Cu from 3 to 24 h post infection (hpi) in infected cells compared to control cells, but there were no changes in the level of Fe. We also used Affymetrix array technology to investigate the global alteration in gene expression of hBMECs and rat brain microvascular endothelial cells (rBMVECs) in response to N. caninum infection at 24 hpi. The result of transcriptome profiling identified differentially expressed genes involved mainly in immune response, lipid metabolism and apoptosis. These data further our understanding of the molecular events that shape the interaction between N. caninum and blood-brain-barrier endothelial cells.
|
Aug 2020
|
|