I18-Microfocus Spectroscopy
|
Abstract: Core/shell Fe/Cu and Fe/Au nanoparticles were prepared directly by deposition from the gas phase. A detailed study of the atomic structure in both the cores and shells of the nanoparticles was undertaken by means of extended absorption fine structure (EXAFS) measurements. For Fe/Cu nanoparticles, a Cu shell ∼20 monolayers thick appears similar in structure to bulk Cu and is sufficient to cause the structure in the Fe core to switch from body centred cubic (bcc; as in bulk Fe) to face centred cubic. This is not the case for thinner Cu shells, 12 monolayers in thickness, in which there is a considerable contraction in nearest-neighbour interatomic distance as the shell structure changes to bcc. In Fe/Au nanoparticles, the crystal structure in the Fe core remains bcc for all Au thicknesses although there is some stretching of the lattice. In thin Au shells ∼2 monolayers thick, there is strong contraction in interatomic distances. There does not appear to be significant alloying at the Fe/Au interface.
|
Sep 2010
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[1125]
|
Sep 2010
|
|
I18-Microfocus Spectroscopy
|
Abstract: The colonization and weathering of young seafloor basaltic glass from the mid-Atlantic Ridge was examined. Microorganisms were localised to fractures in the surface of the basalt and grew on the surfaces of material in the fractures. XAS, Raman Spectroscopy and NanoSIMS analysis of the fracture-filling material shows that it contains non-crystallised iron-enriched altered glass and poorly ordered iron oxides. Organisms, which in places develop into contiguous biofilms, develop on the surface of the material. No putative biogenic alteration textures were observed in the basaltic glass at the fracture boundaries suggesting that the microbial community is restricted to the secondary alteration products. Microbial culturing shows the presence of heterotrophic bacteria including Sufitobacter and Halomonas consistent with observations of photic zone detritus associated with fracture-filling material. These data show that the interior of fresh basaltic glass is an endolithic habitat for microorganisms, but that the glass itself is not a primary source of cations or energy for the developing communities.
|
Oct 2010
|
|
I18-Microfocus Spectroscopy
|
Abstract: Thermal spraying is emerging as the leading route for the deposition of protective coatings onto engineering components to improve operation under extreme conditions of temperature, wear or corrosion. Detailed microstructural assessment is a key element in improving coating performance, and this study demonstrates the application of microfocus X-ray techniques to the determination of elemental and structural variations in the coatings.
|
Oct 2010
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[1793]
Abstract: Al3Ti, Al13Cr2 and Al13Fe4 are important intermetallics in a number of Al alloy systems including complex ultra-high-strength systems with excellent elevated-temperature performance. A full knowledge of their properties and crystallographic structures is a key factor for the understanding of these complex alloys. In the present study samples of the three pure intermetallics were prepared and regions of interest identified in a billet of Al93Fe3Cr2Ti2 alloys and 20 × 10 × 2 µm samples extracted utilizing a Focussed Ion Beam Transmission Electron Microscopy (FIB TEM) sample preparation technique. Using the microfocus spectroscopy beamline I18 at Diamond Light Source we were able to examine 5 µm sections of the samples using X-ray Diffraction (?-XRD) and Extended X-ray Absorption Fine Structure (?-EXAFS) in an attempt to describe the local structure of the second-phase particles and characterized the microstructure of the FIBed samples to selectively illuminate the different phases.
|
Nov 2010
|
|
I18-Microfocus Spectroscopy
|
|
Jan 2011
|
|
I18-Microfocus Spectroscopy
|
Abstract: The chemistry of molybdenum species in artificial corrosion pits on 316L stainless steel was investigated using X-ray absorption spectroscopy (XANES). It was found that the K-edge spectra are consistent with the presence of an Mo(III) species. The presence of Mo(VI) polymolybdates as been proposed to explain the well-known beneficial effects of Mo in decreasing the susceptibility of stainless steel to localised corrosion, but no evidence of these species was found. High resolution measurements (with a spatial resolution of 3.5 μm in the vertical direction) through the dissolving metal interface did not detect the presence of any different Mo-containing species in the vicinity of the salt film. However, the spatial resolution was insufficient to detect the presence of submonolayer species on the dissolving metal surface that have been proposed to block active dissolution.
|
Jan 2011
|
|
I18-Microfocus Spectroscopy
|
Abstract: This thesis concerns the electron and X-ray microanalysis of planetary materials: from Comet 81P/Wild2 to the surface of Mars. Advanced techniques in electron microscopy and X-ray spectroscopy have been developed for the microanalysis of the nakhlite martian meteorites and Comet 81P/Wild2 samples from the Stardust Mission. Electron microprobe analysis and a Focussed Ion Beam - Scanning Electron Microscope (FIB-SEM) technique for Transmission Electron Microscopy (TEM) was used to analyse the secondary mineral assemblages in the nakhlites. Fracture-filling assemblages in the nakhlites are found to be dominated by an amorphous, hydrated Fe-silicate - a gel. The gel decreases in Mgat/Mgat+Feat ratio going up the expected depth profile of the nakhlites. Other phases, especially 2:1 smectites - 1:1 phyllosilicate and carbonate are associated with the gel. Newly discovered 1:1 phyllosilicate, suggested to be serpentine, is also found in the mesostasis of Lafayette. A model is proposed describing the formation of the nakhlites secondary assemblages by an impact-induced hydrothermal system based on the mineralogical and geochemical differences between different samples. A suite of Stardust cometary samples have also been analysed using FIB-TEM and microfocus X-ray spectroscopy that includes: X-ray Fluorescence Spectroscopy (XRF), X-ray Absorption Near-Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) at the Diamond synchrotron. Attempts have been made to distinguish the cometary material from that formed by capture heating in aerogel via the identification of ferric-oxides at track entrances. Finally, the mineralogy and morphology of a terminal particle from Stardust track #154 was studied by analytical TEM. The results show that Comet Wild2 contains a unique Al-diopside-bearing grain, having affinities with the minerals found in refractory objects from the inner Solar System. Upon comparison with different early Solar System materials, the grains mineral assemblage most closely resembles Al-rich chondrules. This adds to the refractory inventory identified in Comet 81P/Wild2.
|
Jan 2011
|
|
B18-Core EXAFS
I18-Microfocus Spectroscopy
|
|
Jan 2011
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[1115]
Abstract: The influence of soil organisms on metal mobility and bioavailability in soils is not currently fully understood. We conducted experiments to determine whether calcium carbonate granules secreted by the earthworm Lumbricus terrestris could incorporate and immobilise lead in lead- and calcium- amended artificial soils. Soil lead concentrations were up to 2000 mg kg-1 and lead:calcium ratios by mass were 0.5-8. Average granule production rates of 0.39 + 0.04 mgcalcite earthworm-1 day-1 did not vary with soil lead concentration. The lead:calcium ratio in granules increased significantly with that of the soil (r2 = 0.81, p = 0.015) with lead concentrations in granules reaching 1577 mg kg-1. X-ray diffraction detected calcite and aragonite in the granules with indications that lead was incorporated into the calcite at the surface of the granules. In addition to the presence of calcite and aragonite X-ray absorption spectroscopy indicated that lead was present in the granules mainly as complexes sorbed to the surface but with traces of lead-bearing calcite and cerussite. The impact that lead-incorporation into earthworm calcite granules has on lead mobility at lead-contaminated sites will depend on the fraction of total soil lead that would be otherwise mobile.
|
Feb 2011
|
|