I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[15771]
Abstract: This research aimed to find the best phenotype of the brown algae Fucus vesiculosus (kelp) which has the greater potential to become a sorption byproduct for Zn removal from contaminated waters. Thus, the Zn uptake capacity and sorption mechanisms of the kelp collected from the Baltic Sea shore was, for the first time, investigated under various conditions, and compared to the phenotype habiting on the Irish Sea shore. Sorption studies were performed investigating the effect of algal dosage, Zn sources as well as algal harvesting time of the year on Zn uptake capacity. The results suggested that the Baltic algae is a better biosorbent for Zn uptake. Sorption mechanisms were studied by employing various indirect and direct approaches, more importantly, including high resolution synchrotron X-Ray Fluorescence and X-Ray Absorption Spectroscopy (XAS) and molecular modelling (MM). The results revealed that alginate and cellulose are among the main polysaccharide bonding Zn at algal surface, via coordination with O atoms from carboxyl and hydroxyl groups. XAS results giving direct measurements of Zn bonding environment on algal surface are supported by MM outputs and suggested that Zn is surrounded by ca. 5 O atoms at interatomic distances varying from 1.94 to 2.02 Å. The results contribute to understanding sorption mechanisms which can further lead to finding the best eluent for Zn desorption from the used biomass, bio sorbent reconditioning and reuse in multiple sorption desorption cycles as well as process optimization before industrial scaling up.
|
Aug 2019
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[7525]
Abstract: Red mud leachate (pH 13) collected from Ajka, Hungary is neutralized to < pH 10 by HCl, gypsum, or seawater addition. During acid neutralization >99% Al is removed from solution during the formation of an amorphous boehmite-like precipitate and dawsonite. Minor amounts of As (24%) are also removed from solution via surface adsorption of As onto the Al oxyhydroxides. Gypsum addition to red mud leachate results in the precipitation of calcite, both in experiments and in field samples recovered from rivers treated with gypsum after the October 2010 red mud spill. Calcite precipitation results in 86% Al and 81% As removal from solution, and both are nonexchangeable with 0.1 mol L–1 phosphate solution. Contrary to As associated with neoformed Al oxyhydroxides, EXAFS analysis of the calcite precipitates revealed only isolated arsenate tetrahedra with no evidence for surface adsorption or incorporation into the calcite structure, possibly as a result of very rapid As scavenging by the calcite precipitate. Seawater neutralization also resulted in carbonate precipitation, with >99% Al and 74% As removed from solution during the formation of a poorly ordered hydrotalcite phase and via surface adsorption to the neoformed precipitates, respectively. Half the bound As could be remobilized by phosphate addition, indicating that As was weakly bound, possibly in the hydrotalcite interlayer. Only 5–16% V was removed from solution during neutralization, demonstrating a lack of interaction with any of the neoformed precipitates. High V concentrations are therefore likely to be an intractable problem during the treatment of red mud leachates.
|
Jun 2013
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[12696]
Open Access
Abstract: Vanadium is a toxic metal present in alkaline leachates produced during the weathering of steel slags. Slag leaching can therefore have deleterious effects on local watercourses due to metal toxicity, the effects of the high pH (9–12.5) and rapid carbonation (leading to smothering of benthic communities). We studied the fate and behaviour of V in slag leachate both through field observations of a heavily affected stream (Howden Burn, Consett UK) and in controlled laboratory experiments where slag leachates were neutralised by CO2 ingassing from air. V was found to be removed from leachates downstream from the Howden Burn source contemporaneously with a fall in pH, Ca, Al and Fe concentrations. In the neutralisation experiments pH reduced from 12 → 8, and limited quantities of V were incorporated into precipitated CaCO3. The presence of kaolinite clay (i.e. SiOH and AlOH surfaces) during neutralisation experiments had no measureable effect on V uptake in the alkaline to circumneutral pH range. XANES analysis showed that V was present in precipitates recovered from experiments as adsorbed or incorporated V(V) indicating its likely presence in leachates as the vanadate oxyanion (HVO42−). Nano-scale particles of 2-line ferrihydrite also formed in the neutralised leachates potentially providing an additional sorption surface for V uptake. Indeed, removal of V from leachates was significantly enhanced by the addition of goethite (i.e. FeOOH surfaces) to experiments. EXAFS analysis of recovered goethite samples showed HVO42− was adsorbed by the formation of strong inner-sphere complexes, facilitating V removal from solution at pH < 10. Results show that carbonate formation leads to V removal from leachates during leachate neutralisation, and the presence of both naturally occurring and neoformed Fe (oxy)hydroxides provide a potent sink for V in slag leachates, preventing the spread of V in the environment.
|
Dec 2018
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[7525]
Open Access
Abstract: High pH leachates can mobilise oxyanion forming elements from alkaline waste, such as iron and steel slags and bauxite ore processing residue, into the wider environment. Red mud is a highly alkaline waste product from bauxite ore processing. It contains elevated concentrations of oxyanion forming elements such as Al, As, V and Mo that are mobilised at high pH together with other trace metals including Cu and Ni. The red mud spill at Ajka, Hungary released 1 million m3 of caustic red mud into the surrounding area. As part of the initial clean-up, some thinner red mud deposits (< 5 cm) were ploughed into fields to prevent dust formation whereas wetland areas were left untreated. This study used aerobic and anaerobic batch microcosms together with XAS spectroscopy, (HPLC)-ICP-MS and solid phase extraction techniques to investigate the effects of red mud addition to unaffected soils with respect to biogeochemical processes and trace element release. Experiments were designed to be analogous to soil conditions following the remediation efforts. The results showed that the effect of red mud addition to soils was highly dependent upon soil properties, experimental pH, and total organic carbon (TOC) content. As and V were found to be persistently mobile under both aerobic and anaerobic conditions. Red mud addition to soils with a high TOC content mobilised high aqueous concentrations of organic matter complexing metals such as Cu, Ni and V under anaerobic conditions. Gypsum addition to red mud affected soils showed a reduction in aqueous oxyanion concentrations compared to soils with red mud addition alone indicating that it is potential ameliorant for red mud contaminated soils. The results showed that the extensive remediation efforts by the Hungarian authorities were justified but that red mud should be used with caution as a soil amendment.
|
Dec 2014
|
|
I18-Microfocus Spectroscopy
|
Abstract: Marine and lacustrine archaeological waterlogged wood encounters serious problems after excavation due to the accumulation of sulfur and iron compounds during burial. Exposure of these compounds to oxygen results in precipitation of salts and acidification, which can lead to serious structural damage, and ultimately the loss of important cultural heritage. In this study, we evaluated the capacity of the bacterium Thiobacillus denitrificans to transform sulfur compounds commonly found in waterlogged wooden objects, to more readily extractable compounds thereby eliminating the threat of degradation. Oak samples, impregnated with a solution containing iron(II) and sulfides, were used to assess the efficiency of the bacterial treatment. The model wood samples were characterized before and after treatment using different techniques such as ESEM-EDS, micro-Raman spectroscopy, XRD and Sy-XRF mapping. Before treatment, mackinawite (FeS) and mineral sulfur (α-S8) were detected in the impregnated wood. After treatment with T. denitrificans, even though some mineral sulfur remained in the samples, the predominant phase corresponded to oxidized sulfur. This demonstrates that T. denitrificans was able to use the reduced sulfur compounds present in the wood samples as an energy source, thereby producing more soluble oxidized sulfur compounds. In addition, non-invasive techniques such as Fourier transform infrared (FTIR) spectroscopy, were carried out to assess the consequences of the biological treatment on the wood structure. No negative effect on the wood was detected after the treatment in comparison with the reference-impregnated wood. This study demonstrates the feasibility of a biotechnological procedure for the preventive extraction of sulfur species from archaeological waterlogged wood.
|
Jul 2018
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[879]
Abstract: To have any hope of affecting the course of Parkinson's disease, early diagnosis is essential. Rachel Jones assesses progress so far.
When a patient is diagnosed with Parkinson's disease, they usually have two or three of the cardinal symptoms: resting tremor, rigidity and bradykinesia (slowed movement). By this stage, however, they have probably had the disease for years and up to four-fifths of the dopamine-producing neurons in the substantia nigra have been lost. There is currently no way to reverse this damage, but what if doctors could diagnose Parkinson's disease earlier, before so much harm has been done?
The search is on for a biomarker for early Parkinson's disease — a test that can reliably and specifically predict which patients are going to develop the disease while they are still in the early stages (Box 1). Such a biomarker would have several benefits: patients could be warned that they are likely to develop Parkinson's disease; longitudinal studies of these patients could help researchers develop treatments to slow or even halt the progression of the disease; and, if such treatments were to be developed, a reliable biomarker could allow treatment to begin earlier.
|
Aug 2010
|
|
I18-Microfocus Spectroscopy
|
Abstract: The poorly controlled disposal of chromium ore processing residue (COPR) is a globally widespread problem due to its potential to form chromium contaminated hyperalkaline (pH > 12) leachates. These highly oxidising leachates typically contain chromium in the Cr(VI) oxidation state as its chromate anion (CrO42-). This anion is highly mobile, toxic, carcinogenic, and exhibits a high degree of bioavailability. Under reducing conditions chromium exists in the non-toxic and poorly soluble Cr(III) oxidation state. Thus, the reduction of Cr(VI) to Cr(III) is often the goal of remediative strategies. In anaerobic subsurface environments where reducing conditions are established by the indigenous microbial population, chromium reduction can occur naturally. The microbial transformation of Cr(VI) to Cr(III) can be both a result of its direct use in microbial metabolism, or through its indirect reaction with microbially produced reduced species, e.g. Fe(II). This study has used a multidisciplinary approach to investigate the biogeochemical influences on the fate and stability of Cr(VI) leaching from a site of COPR in the north of England. Reducing sediments encountered directly beneath the COPR waste were found contain elevated concentrations of chromium. These sediments were shown to be able to remove aqueous Cr(VI) from solution when incubated with contaminated site groundwater in microcosm incubation experiments. This removal is likely a result of the abiotic reduction by soil associated microbially produced Fe(II), followed by precipitation as insoluble Cr(III) hydroxides. X-ray absorption spectroscopy (XAS) and electron microscopy confirms the association of chromium as Cr(III) with iron in these soils, hosted as a mixed Cr(III)-Fe(III) oxyhydroxide phase. Upon air oxidation, only minor amounts of chromium was remobilised from these sediments as Cr(VI). A diverse population of alkaliphilic microorganisms are indigenous to this horizon, capable of successful metabolism despite elevated pH values. This population was found to contain a consortium of microorganisms capable of iron reduction when incubated at pH 9 to 9.5. Microbial community analysis found taxonomic similarity to several known metal reducing alkaliphiles from the phylum Firmicutes. These results suggest that the novel action of iron reducing alkaliphiles indigenous to reducing sediments beneath COPR sites may provide zones of natural chromium attenuation via microbially mediated mechanisms of Cr(VI) transformation.
|
Jan 2012
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[10155, 13025]
Abstract: Reduced losses in silicon-core fibers are obtained using CO2 laser directional recrystallization of the core. Single crystals with aspect ratios up to 1500:1 are reported, limited by the scan range of the equipment. This processing technique holds promise for bringing crystalline silicon-core fibers to a central role in nonlinear optics and signal processing applications.
|
Mar 2016
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[12303]
Open Access
Abstract: Microcalcifications are important diagnostic indicators of disease in breast tissue. Tissue microenvironments differ in many aspects between normal and cancerous cells, notably extracellular pH and glycolytic respiration. Hydroxyapatite microcalcification microstructure is also found to differ between tissue pathologies, including differential ion substitutions and the presence of additional crystallographic phases. Distinguishing between tissue pathologies at an early stage is essential to improve patient experience and diagnostic accuracy, leading to better disease outcome. This study explores the hypothesis that microenvironment features may become immortalised within calcification crystallite characteristics thus becoming indicators of tissue pathology. In total, 55 breast calcifications incorporating 3 tissue pathologies (benign – B2, ductal carcinoma in-situ - B5a and invasive malignancy - B5b) from archive formalin-fixed paraffin-embedded core needle breast biopsies were analysed using X-ray diffraction. Crystallite size and strain were determined from 548 diffractograms using Williamson-Hall analysis. There was an increased crystallinity of hydroxyapatite with tissue malignancy compared to benign tissue. Coherence length was significantly correlated with pathology grade in all basis crystallographic directions (P < 0.01), with a greater difference between benign and in situ disease compared to in-situ disease and invasive malignancy. Crystallite size and non-uniform strain contributed to peak broadening in all three pathologies. Furthermore, crystallite size and non-uniform strain normal to the basal planes increased significantly with malignancy (P < 0.05). Our findings support the view that tissue microenvironments can influence differing formation mechanisms of hydroxyapatite through acidic precursors, leading to differential substitution of carbonate into the hydroxide and phosphate sites, causing significant changes in crystallite size and non-uniform strain.
|
Dec 2019
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[6684]
Abstract: The evolution of basaltic magmas depends on their redox state, hence oxygen fugacity, but there is increasing evidence that this intensive thermodynamic variable may be less well understood in basalts than commonly supposed. The redox state of terrestrial basalts has to a large extent been inferred from the Fe3+/Fe2+ ratios of their quenched glasses. However, this quantity appears to be significantly affected during late and post-eruptive processes in magmatic systems (e.g. by degassing, charge-transfer reactions of redox-variable species, and alteration), so that the degree to which the Fe3+/Fe2+ ratios preserved in basaltic glasses reflect the oxidation state of the magma at high temperature is unclear. Because olivine is the first silicate mineral to crystallize from primitive basaltic liquids on cooling following decompression, the equilibrium partitioning relations preserved in olivine phenocrysts in basalts are, in principle, less disturbed by these late and post-eruptive processes and, therefore, may better reflect the high-temperature (pre-eruptive) conditions of the magma. Here we calibrate an oxybarometer based on the strong sensitivity of the partitioning of vanadium between olivine and silicate melt to oxygen fugacity. Our empirical parameterization, calibrated over a range of redox conditions between four log10 units above and below the quartz–fayalite–magnetite (QFM) oxygen buffer, takes into account the effects of temperature, olivine composition (i.e. Mg/Fe ratios) and melt composition (namely the activities of CaO, SiO2, AlO1·5, NaO0·5 and KO0·5), and allows oxygen fugacity determinations to within ∼0·25 log10 units. We also explore the sensitivity of the exchange partitioning of Sc and Y between olivine and melt to temperature as a geothermometer. Our calibration indicates that this geothermometer allows temperature to be estimated to within 15°C, but precision is strongly dependent on the Sc and Y measurements in olivine and melt.
|
Feb 2013
|
|