I18-Microfocus Spectroscopy
|
Fabien
Knoll
,
Luis M.
Chiappe
,
Sophie
Sanchez
,
Russell J.
Garwood
,
Nicholas P.
Edwards
,
Roy A.
Wogelius
,
William I.
Sellers
,
Phillip L.
Manning
,
Francisco
Ortega
,
Francisco J.
Serrano
,
Jesús
Marugán-lobón
,
Elena
Cuesta
,
Fernando
Escaso
,
Jose Luis
Sanz
Diamond Proposal Number(s):
[11865]
Open Access
Abstract: Fossils of juvenile Mesozoic birds provide insight into the early evolution of avian development, however such fossils are rare. The analysis of the ossification sequence in these early-branching birds has the potential to address important questions about their comparative developmental biology and to help understand their morphological evolution and ecological differentiation. Here we report on an early juvenile enantiornithine specimen from the Early Cretaceous of Europe, which sheds new light on the osteogenesis in this most species-rich clade of Mesozoic birds. Consisting of a nearly complete skeleton, it is amongst the smallest known Mesozoic avian fossils representing post-hatching stages of development. Comparisons between this new specimen and other known early juvenile enantiornithines support a clade-wide asynchronous pattern of osteogenesis in the sternum and the vertebral column, and strongly indicate that the hatchlings of these phylogenetically basal birds varied greatly in size and tempo of skeletal maturation.
|
Mar 2018
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
I13-2-Diamond Manchester Imaging
I18-Microfocus Spectroscopy
|
Open Access
Abstract: Tomographic datasets collected at synchrotrons are becoming very large and complex, and, therefore, need to be managed efficiently. Raw images may have high pixel counts, and each pixel can be multidimensional and associated with additional data such as those derived from spectroscopy. In time-resolved studies, hundreds of tomographic datasets can be collected in sequence, yielding terabytes of data. Users of tomographic beamlines are drawn from various scientific disciplines, and many are keen to use tomographic reconstruction software that does not require a deep understanding of reconstruction principles. We have developed Savu, a reconstruction pipeline that enables users to rapidly reconstruct data to consistently create high-quality results. Savu is designed to work in an 'orthogonal' fashion, meaning that data can be converted between projection and sinogram space throughout the processing workflow as required. The Savu pipeline is modular and allows processing strategies to be optimized for users' purposes. In addition to the reconstruction algorithms themselves, it can include modules for identification of experimental problems, artefact correction, general image processing and data quality assessment. Savu is open source, open licensed and 'facility-independent': it can run on standard cluster infrastructure at any institution.
|
May 2015
|
|
I18-Microfocus Spectroscopy
|
Open Access
Abstract: Iron sulfur (Fe–S) phases have been implicated in the emergence of life on early Earth due to their catalytic role in the synthesis of prebiotic molecules. Similarly, Fe–S phases are currently of high interest in the development of green catalysts and energy storage. Here we report the synthesis and structure of a nanoparticulate phase (FeSnano) that is a necessary solid-phase precursor to the conventionally assumed initial precipitate in the iron sulfide system, mackinawite. The structure of FeSnano contains tetrahedral iron, which is compensated by monosulfide and polysulfide sulfur species. These together dramatically affect the stability and enhance the reactivity of FeSnano.
|
Aug 2018
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[9446, 9456]
Abstract: Mantle oxygen fugacity (fO2) governs the physico-chemical evolution of the Earth, however current estimates from commonly used basalt redox proxies are often in disagreement. In this study we compare three different potential basalt fO2 proxies: Fe3+/Fetot, V/Sc and V isotopes, determined on the same submarine lavas from a 700 km section of the Reykjanes Ridge, near Iceland. These samples provide a valuable test of the sensitivities of fO2 proxies to basalt petrogenesis, as they formed at different melting conditions and from a mantle that towards Iceland exhibits increasing long-term enrichment of incompatible elements. New trace element data were determined for 63 basalts with known Fe3+/Fetot. A subset of 19 lavas, covering the geographical spread of the ridge transect, was selected for vanadium isotope analyses.
Vanadium is a multi-valence element whose isotopic fractionation is theoretically susceptible to redox conditions. Yet, the
δ51
VAA composition of basaltic glasses along the Reykjanes Ridge covers only a narrow range (
δ51
VAA = −1.09 to −0.86‰; 1SD = 0.02–0.09) and does not co-vary with fractionation-corrected Fe3+/Fetot (0.134–0.151; 1SD = 0.005) or V/Sc (6.6–8.5; 1SD = 0.1-1.3) ratios. However, on a global scale, basaltic
δ51
VAA may be controlled by the extent of melting. The V/Sc compositions of primitive (MgO > 7.5 wt%) basalts show no systematic change along the entire length of the Reykjanes Ridge. Typical peridotite melting models in which source Fe3+/Fetot is constant at 5% and that account for the increased mantle potential temperature nearer the plume center and the fO2 dependent partitioning of V, can reproduce the V/Sc data. However, while these melting models predict that basalt Fe3+/Fetot ratios should decrease with increasing mantle potential temperature towards Iceland, fractionation-corrected Fe3+/Fetot of Reykjanes Ridge lavas remain nearly constant over the ridge length. This discrepancy is explained by source heterogeneity, where an oxidized mantle pyroxenite component contributes to melting with increasing proximity to Iceland.
Comparison of observed and modeled Fe3+/Fetot indicate that source variation in fO2 is present under the Reykjanes Ridge, with higher Fe3+/Fetot closer to Iceland. This source variability in fO2 cannot be resolved by V isotopes and redox-sensitive trace element ratios, which instead appear to record magmatic processes.
|
Dec 2019
|
|
I18-Microfocus Spectroscopy
|
Anita
Cadoux
,
Giada
Iacono-marziano
,
Antonio
Paonita
,
Etienne
Deloule
,
Alessandro
Aiuppa
,
G.
Nelson Eby
,
Michela
Costa
,
Lorenzo
Brusca
,
Kim
Berlo
,
Kaltina
Geraki
,
Tamsin A.
Mather
,
David M.
Pyle
,
Ida
Di Carlo
Diamond Proposal Number(s):
[8797]
Abstract: Measuring the low bromine abundances in Earth’s materials remains an important challenge in order to constrain the geodynamical cycle of this element. Suitable standard materials are therefore required to establish reliable analytical methods to quantify Br abundances. In this study we characterise 21 Br-doped glasses synthesized from natural volcanic rocks of mafic to silicic compositions, in order to produce a new set of standards for Br analyses using various techniques. The nominal Br contents (amounts of Br loaded in the experimental samples) of 15 of 21 glasses were confirmed within 20% by instrumental neutron activation analysis (INAA). Using this new set of standards, we compare three micro-analytical approaches to measure Br contents in silicate glasses: synchrotron X-ray fluorescence (SR-XRF), laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS). With SR-XRF, the Br contents of the standard glasses were determined with the highest accuracy (< 10% for Br ≥ 10 ppm; > 25% for Br ≤ 5 ppm), and high precision (< 10% for Br contents > 10 ppm; 20-30% for Br ≤ 10 ppm). The detection limit was estimated to be less than 1 ppm Br. All those factors combined with a high spatial resolution (5x5 μm for the presented measurements), means that SR-XRF is well suited to determine the low Br abundance in natural volcanic glasses (crystal-hosted melt inclusions or matrix glasses of crystallized samples). At its current stage of development, the LA-ICP-MS method allows the measurement of hundreds to thousands ppm Br in silicate glasses with a precision and accuracy generally within 20 %. The Br detection limit of this method has not been estimated but its low spatial resolution (90 μm) currently prevents its use to characterise natural volcanic glasses, however it is fully appropriate to analyse super liquidus or sparsely phyric, Br-rich experimental charges. Our study shows that SIMS appears to be a promising technique to measure the low Br contents of natural volcanic glasses. Its spatial resolution is relatively good (~ 15 μm) and, similarly to SR-XRF, the detection limit is estimated to be ≤ 1 ppm. Using our new set of standards, the Br contents of two MPI-DING reference glasses containing less than 1.2 ppm of Br were reproduced with precision < 5% and accuracy < 20%. Moreover, SIMS presents the advantage of being a more accessible instrument than SR-XRF and data processing is more straightforward.
|
Feb 2017
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[3731, 6689]
Abstract: The oxidation state of Fe, Fe3+/Fe (where Fe=Fe2++Fe3+), in glass samples of mid-ocean ridge basalt (MORB), from a wide range of localities, was determined by XANES spectroscopy to be 0.10(2) (n =42). This value is lower than that reported previously by XANES, 0.16(1)(n =103), but consistent with the most recent value determined by redox titrations, 0.11(2)(n =104), all for similar sets of samples. We attribute the anomalously high XANES value of 0.16 to a calibration error resulting from the interpretation of Mössbauer spectra and the resulting Fe3+/Fe values of the standards. Our alternative interpretation removes the problem of resolving Fe3+/Fe values <∼0.1 in basaltic glasses, produces isomer shift and quadrupole splitting values for Fe3+that are independent of Fe3+/Fe (as is the case for Fe2+), and gives Fe3+/Fe values that are consistent with the thermodynamically expected dependence on oxygen fugacity (fO2). Fe3+/Fe2+is related to fO2for our synthetic MORB composition by the temperature independent expression QFM=4 log(Fe3+/Fe2+) +4.23(5), where QFM is the fO2in log units relative to the quartz–fayalite–magnetite buffer. The average fO2of natural MORB was estimated to be QFM+0.1.
|
Feb 2018
|
|
I18-Microfocus Spectroscopy
|
Open Access
Abstract: The first experimental results from a new transmissive diagnostic instrument for synchrotron X-ray beamlines are presented. The instrument utilizes a single-crystal chemical-vapour-deposition diamond plate as the detector material, with graphitic wires embedded within the bulk diamond acting as electrodes. The resulting instrument is an all-carbon transmissive X-ray imaging detector. Within the instrument's transmissive aperture there is no surface metallization that could absorb X-rays, and no surface structures that could be damaged by exposure to synchrotron X-ray beams. The graphitic electrodes are fabricated in situ within the bulk diamond using a laser-writing technique. Two separate arrays of parallel graphitic wires are fabricated, running parallel to the diamond surface and perpendicular to each other, at two different depths within the diamond. One array of wires has a modulated bias voltage applied; the perpendicular array is a series of readout electrodes. X-rays passing through the detector generate charge carriers within the bulk diamond through photoionization, and these charge carriers travel to the nearest readout electrode under the influence of the modulated electrical bias. Each of the crossing points between perpendicular wires acts as an individual pixel. The simultaneous read-out of all pixels is achieved using a lock-in technique. The parallel wires within each array are separated by 50 µm, determining the pixel pitch. Readout is obtained at 100 Hz, and the resolution of the X-ray beam position measurement is 600 nm for a 180 µm size beam.
|
May 2020
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[1125]
|
Sep 2010
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[1205]
Abstract: This thesis reports a study of the sulfur problem which is the production of sulfuric acid via the oxidation of iron sulfide in the timbers of the Mary Rose a flagship of Henry VIII 's navy which sunk in 1535 and was raised in 1982. The work has involved a range of chemical and physical techniques with particular use of synchrotron sources to measure the iron and sulfur speciation in the timbers with X-ray absorption spectroscopy (XAS) measurements. XAS measurements are almost unique in providing the speciation of atoms in a sample via the XANES. They are particularly useful for sulfur, which has a wide range of oxidation states. However, the current work has shown the need to use the bulk and microfocus XAS measurements in parallel, particularly for archaeological samples. It is clear that the iron and sulfur contents and speciation can vary widely from sample to sample of the Mary Rose timbers. In the study on the effectiveness of chelating agents in the removal of iron species from the timbers care was taken, wherever possible, to ensure that the same samples and sample positions were used for the before and after treatment measurements. The nature of the iron and su~ur species is of extreme importance because it is assumed that it is Fe" that gives rise to the production of su~uric acid. The current study has shown that in the timbers that had not been PEG treated contained iron in the surface regions that was predominantly Fe", similar to the findings of other workers. Most of the work in this thesis used samples close to the surface of the timbers. It was only in samples taken deep into the timbers experiments that there were significant concentrations of Fe". A range of sulfur species were found in the samples. The predominant species were reduced sulfur species, elemental sulfur and sulfate. Very little pyrite was found -in the timbers studied, but it should be noted that these timbers had not been PEG treated. Some pyrite was found in the cell walls. The present studies were predominantly on the surface regions of the timbers and the conclusion is that the bulk of the pyrite which may have been present had oxidised in the moist, oxygen containing environment in which they had been stored after recovery from the sea bed. A key finding of the present study is the co-location of iron and sulfate in the timbers. This had been suggested but had not been experimentally verified. The production of sulfuric acid in the timbers is thought to involve the oxidation of iron sulfides in the presence of water to produce is iron sulfate and sulfuric acid. The fact that the present experiments show iron and sulfate in the same positions i'] the XANES maps strongly supports the proposed oxidation mechanism of iron sulfides. The bulk and microfocus XAS experiments show that a large fraction of the iron in the current samples was in the form of an oxide. This is most likely to be goethite (FeO(OH)). The XANES analysis and the fitting of the EXAFS are consistent with this identification. All the four chelating agents used in this work (EDTA, DTPA, ammonium citrate and calcium phytate) were effective in removing iron from the timbers. However, the more efficient are DTPA and calcium phytate in terms of amount removed at fixed molarity. For samples that had been treated with PEG the current work showed that the chelating agents were less effective. This is presumably due to the PEG blocking the penetration of the solutions of the chelating agents into the wood.
|
Oct 2011
|
|
B18-Core EXAFS
I18-Microfocus Spectroscopy
|
Abstract: We have constructed a Time-Resolved X-ray Excited Optical Luminescence (TR-XEOL) detection system at the Microfocus Spectroscopy beamline I18 at the Diamond Light Source. Using the synchrotron in "hybrid bunch mode", the data collection is triggered by the RF clock, and we are able to record XEOL photons with a time resolution of 6.1 ps during the 230 ns gap between the hybrid bunch and the main train of electron bunches. We can detect photons over the range 180-850 nm using a bespoke optical fibre, with X-ray excitation energies between 2 and 20 keV. We have used the system to study a range of feldspars. The detector is portable and has also been used on beamline B18 to collect Optically Determined X-ray Absorption Spectroscopy (OD-XAS) in QEXAFS mode.
|
Mar 2013
|
|