I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Amanda F.
Ennis
,
C. Skyler
Cochrane
,
Patrick A.
Dome
,
Pyeonghwa
Jeong
,
Jincheng
Yu
,
Hyejin
Lee
,
Carly S.
Williams
,
Yang
Ha
,
Weitao
Yang
,
Pei
Zhou
,
Jiyong
Hong
Diamond Proposal Number(s):
[442]
Open Access
Abstract: Enterobacterales, a large order of Gram-negative bacteria, including Escherichia coli and Klebsiella pneumoniae, are major causes of urinary tract and gastrointestinal infections, pneumonia, and other diseases in healthcare settings and communities. ESBL-producing Enterobacterales and carbapenem-resistant Enterobacterales can break down commonly used antibiotics, with some strains being resistant to all available antibiotics. This public health threat necessitates the development of novel antibiotics, ideally targeting new pathways in these bacteria. Gram-negative bacteria possess an outer membrane enriched with lipid A, a saccharolipid that serves as the membrane anchor of lipopolysaccharides and the active component of the bacterial endotoxin, causing septic shock. The biosynthesis of lipid A is crucial for the viability of Gram-negative bacteria, and as an essential enzyme in this process, LpxH has emerged as a promising target for developing novel antibiotics against multidrug-resistant Gram-negative pathogens. Here, we report the development of pyridinyl sulfonyl piperazine LpxH inhibitors. Among them, ortho-substituted pyridinyl compounds significantly boost LpxH inhibition and antibiotic activity over the original phenyl series. Structural and QM/MM analyses reveal that these improved activities are primarily due to the enhanced interaction between F141 of the LpxH insertion lid and the pyridinyl group. Incorporation of the N-methyl-N-phenyl-methanesulfonamide moiety into the pyridinyl sulfonyl piperazine backbone results in JH-LPH-106 and JH-LPH-107, both of which exhibit potent antibiotic activity against wild-type Enterobacterales such as K. pneumoniae and E. coli. JH-LPH-107 exhibits a low rate of spontaneous resistance and a high safety window in vitro, rendering it an excellent lead for further clinical development.
|
Nov 2024
|
|
I02-Macromolecular Crystallography
|
Michal
Banasik
,
Valeria
Napolitano
,
Artur
Blat
,
Karim
Abdulkarim
,
Jacek
Plewka
,
Cezary
Czaplewski
,
Artur
Gieldon
,
Maciej
Kozak
,
Benedykt
Wladyka
,
Grzegorz
Popowicz
,
Grzegorz
Dubin
Abstract: Peroxisomal protein import has been identified as a valid target in trypanosomiases, an important health threat in Central and South America. The importomer is built of multiple peroxins (Pex) and structural characterization of these proteins facilitates rational inhibitor development. We report crystal structures of the Trypanosoma brucei and T. cruzi tetratricopeptide repeat domain (TPR) of the cytoplasmic peroxisomal targeting signal 1 (PTS1) receptor Pex5. The structure of the TPR domain of TbPex5 represents an apo-form of the receptor which, together with the previously determined structure of the complex of TbPex5 TPR and PTS1 demonstrate significant receptor dynamics associated with signal peptide recognition. The structure of the complex of TPR domain of TcPex5 with PTS1 provided in this study details the molecular interactions that guide signal peptide recognition at the atomic level in the pathogenic species currently perceived as the most relevant among Trypanosoma. Small – angle X – ray scattering (SAXS) data obtained in solution supports the crystallographic findings on the compaction of the TPR domains of TbPex5 and TcPex5 upon interaction with the cargo.
|
Sep 2024
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Clare
Thomson
,
Peter
Barton
,
Erin
Braybrooke
,
Nicola
Colclough
,
Zhiqiang
Dong
,
Laura
Evans
,
Nicolas
Floc’h
,
Carine
Guérot
,
David
Hargreaves
,
Puneet
Khurana
,
Songlei
Li
,
Xiuwei
Li
,
Andrew
Lister
,
William
Mccoull
,
Lisa
Mcwilliams
,
Jonathan P.
Orme
,
Martin J.
Packer
,
Aisha M.
Swaih
,
Richard A.
Ward
,
Poppy
Winlow
,
Yang
Ye
Diamond Proposal Number(s):
[29353]
Abstract: Herein, we report the identification and optimization of a series of potent inhibitors of EGFR Exon20 insertions with significant selectivity over wild-type EGFR. A strategically designed HTS campaign, multiple iterations of structure-based drug design (SBDD), and tactical linker replacement led to a potent and wild-type selective series of molecules and ultimately the discovery of 36. Compound 36 is a potent and selective inhibitor of EGFR Exon20 insertions and has demonstrated encouraging efficacy in NSCLC EGFR CRISPR-engineered H2073 xenografts that carry an SVD Exon20 insertion and reduced efficacy in a H2073 wild-type EGFR xenograft model compared to CLN-081 (5), indicating that 36 may have lower EGFR wild-type associated toxicity.
|
May 2024
|
|
I02-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[9007, 14043]
Open Access
Abstract: Enzymes of the GNAT (GCN5-relate N-acetyltransferases) superfamily are important regulators of cell growth and development. They are functionally diverse and share low amino acid sequence identity, making functional annotation difficult. In this study, we report the function and structure of a new ribosomal enzyme, Nα-acetyl transferase from Bacillus cereus (RimLBC), a protein that was previously wrongly annotated as an aminoglycosyltransferase. Firstly, extensive comparative amino acid sequence analyses suggested RimLBC belongs to a cluster of proteins mediating acetylation of the ribosomal protein L7/L12. To assess if this was the case, several well established substrates of aminoglycosyltransferases were screened. The results of these studies did not support an aminoglycoside acetylating function for RimLBC. To gain further insight into RimLBC biological role, a series of studies that included MALDI-TOF, isothermal titration calorimetry, NMR, X-ray protein crystallography, and site-directed mutagenesis confirmed RimLBC affinity for Acetyl-CoA and that the ribosomal protein L7/L12 is a substrate of RimLBC. Last, we advance a mechanistic model of RimLBC mode of recognition of its protein substrates. Taken together, our studies confirmed RimLBC as a new ribosomal Nα-acetyltransferase and provide structural and functional insights into substrate recognition by Nα-acetyltransferases and protein acetylation in bacteria.
|
Apr 2024
|
|
I02-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Shunsuke
Nishio
,
Chihiro
Emori
,
Benjamin
Wiseman
,
Dirk
Fahrenkamp
,
Elisa
Dioguardi
,
Sara
Zamora-Caballero
,
Marcel
Bokhove
,
Ling
Han
,
Alena
Stsiapanava
,
Blanca
Algarra
,
Yonggang
Lu
,
Mayo
Kodani
,
Rachel E.
Bainbridge
,
Kayla M.
Komondor
,
Anne E.
Carlson
,
Michael
Landreh
,
Daniele
De Sanctis
,
Shigeki
Yasumasu
,
Masahito
Ikawa
,
Luca
Jovine
Diamond Proposal Number(s):
[8492]
Open Access
Abstract: Following the fertilization of an egg by a single sperm, the egg coat or zona pellucida (ZP) hardens and polyspermy is irreversibly blocked. These events are associated with the cleavage of the N-terminal region (NTR) of glycoprotein ZP2, a major subunit of ZP filaments. ZP2 processing is thought to inactivate sperm binding to the ZP, but its molecular consequences and connection with ZP hardening are unknown. Biochemical and structural studies show that cleavage of ZP2 triggers its oligomerization. Moreover, the structure of a native vertebrate egg coat filament, combined with AlphaFold predictions of human ZP polymers, reveals that two protofilaments consisting of type I (ZP3) and type II (ZP1/ZP2/ZP4) components interlock into a left-handed double helix from which the NTRs of type II subunits protrude. Together, these data suggest that oligomerization of cleaved ZP2 NTRs extensively cross-links ZP filaments, rigidifying the egg coat and making it physically impenetrable to sperm.
|
Mar 2024
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[9948, 13587, 24948]
Open Access
Abstract: Siastatin B is a potent and effective iminosugar inhibitor of three diverse glycosidase classes, namely, sialidases, β-d-glucuronidases, and N-acetyl-glucosaminidases. The mode of inhibition of glucuronidases, in contrast to sialidases, has long been enigmatic as siastatin B appears too bulky and incorrectly substituted to be accommodated within a β-d-glucuronidase active site pocket. Herein, we show through crystallographic analysis of protein-inhibitor complexes that siastatin B generates both a hemiaminal and a 3-geminal diol iminosugar (3-GDI) that are, rather than the parent compound, directly responsible for enzyme inhibition. The hemiaminal product is the first observation of a natural product that belongs to the noeuromycin class of inhibitors. Additionally, the 3-GDI represents a new and potent class of the iminosugar glycosidase inhibitor. To substantiate our findings, we synthesized both the gluco- and galacto-configured 3-GDIs and characterized their binding both structurally and kinetically to exo-β-d-glucuronidases and the anticancer target human heparanase. This revealed submicromolar inhibition of exo-β-d-glucuronidases and an unprecedented binding mode by this new class of inhibitor. Our results reveal the mechanism by which siastatin B acts as a broad-spectrum glycosidase inhibitor, identify a new class of glycosidase inhibitor, and suggest new functionalities that can be incorporated into future generations of glycosidase inhibitors.
|
Dec 2023
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[310, 6388, 8359, 10369, 14692]
Open Access
Abstract: Fibrinogen C-domain containing-1 (FIBCD1) is an immune protein proposed to be involved in host recognition of chitin on the surface of pathogens. As FIBCD1 readily binds to acetylated molecules, we have determined the high-resolution crystal structures of a recombinant fragment of the FIBCD1 C-terminal domain complexed with small N-acetyl-containing ligands to determine the mode of recognition. All ligands bind at the conserved N-acetyl binding site (S1) with galactose and glucose-derived ligands rotated 180⁰ with respect to each other. One subunit of a native structure derived from protein expressed in mammalian CHO cells binds glycosylation from a neighbouring subunit, in an extended binding site. Across the various structures, the primary S1 binding pocket is occupied by N-acetyl-containing ligands or acetate, with N-acetyl, acetate or a sulfate ion in an adjacent pocket S1(2). Inhibition binding studies of N-acetylglucosamine oligomers, (GlcNAc)n, n=1,2,3,5,11, via ELISA along with Microscale Thermophoresis affinity assays indicate a strong preference of FIBCD1 for longer N-acetylchitooligosaccharides. Binding studies of mutant H396A, located beyond the S1(2) site, showed no significant difference to wildtype but K381L, within the S1(2) pocket, blocked binding to the model ligand acetylated bovine serum albumin suggesting that this pocket may have functional importance in FIBCD1 ligand binding. The binding studies, alongside structural definition of diverse N-acetyl monosaccharide binding in the primary S1 pocket and of additional, adjacent binding pockets, able to accommodate both carbohydrate and sulfate functional groups, suggests a versatility in FIBCD1 to recognise chitin oligomers and other pathogen-associated carbohydrate motifs across an extended surface.
|
Dec 2023
|
|
I02-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I24-Microfocus Macromolecular Crystallography
|
Open Access
Abstract: Protein fold adaptation to novel enzymatic reactions is a fundamental evolutionary process. Cofactor-independent oxygenases degrading N-heteroaromatic substrates belong to the α/β-hydrolase (ABH) fold superfamily that typically does not catalyze oxygenation reactions. Here, we have integrated crystallographic analyses under normoxic and hyperoxic conditions with molecular dynamics and quantum mechanical calculations to investigate its prototypic 1-H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD) member. O2 localization to the “oxyanion hole”, where catalysis occurs, is an unfavorable event and the direct competition between dioxygen and water for this site is modulated by the “nucleophilic elbow” residue. A hydrophobic pocket that overlaps with the organic substrate binding site can act as a proximal dioxygen reservoir. Freeze-trap pressurization allowed the structure of the ternary complex with a substrate analogue and O2 bound at the oxyanion hole to be determined. Theoretical calculations reveal that O2 orientation is coupled to the charge of the bound organic ligand. When 1-H-3-hydroxy-4-oxoquinaldine is uncharged, O2 binds with its molecular axis along the ligand's C2–C4 direction in full agreement with the crystal structure. Substrate activation triggered by deprotonation of its 3-OH group by the His-Asp dyad, rotates O2 by approximately 60°. This geometry maximizes the charge transfer between the substrate and O2, thus weakening the double bond of the latter. Electron density transfer to the O2(π*) orbital promotes the formation of the peroxide intermediate via intersystem crossing that is rate-determining. Our work provides a detailed picture of how evolution has repurposed the ABH-fold architecture and its simple catalytic machinery to accomplish metal-independent oxygenation.
|
Oct 2023
|
|
B21-High Throughput SAXS
I02-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[10627, 14744]
Open Access
Abstract: Increased viral surveillance has led to the isolation and identification of numerous uncharacterized paramyxoviruses, rapidly expanding our understanding of paramyxoviral diversity beyond the bounds of known genera. Despite this diversity, a key feature that unites paramyxoviruses is the presence of a receptor-binding protein (RBP), which facilitates host-cell attachment and plays a fundamental role in determining host range. Here, we study the RBP presented on the surface of rodent-borne paramyxoviruses Mossman and Nariva (MosV and NarV, respectively), viruses that constitute founding members of the recently defined Narmovirus genus within the Paramyxoviridae family. Crystallographic analysis of the C-terminal head region of the dimeric MosV and NarV RBPs demonstrates that while these glycoproteins retain the canonical six-bladed β-propeller fold found in other paramyxoviral RBPs, they lack the structural motifs associated with established paramyxovirus host-cell receptor entry pathways. Consistent with MosV-RBP and NarV-RBP undergoing a distinct entry pathway from other characterized paramyxoviruses, structure-based phylogenetic analysis demonstrates that these six-bladed β-propeller head domains form a singular structural class that is distinct from other paramyxoviral RBPs. Additionally, using an integrated crystallographic and small-angle X-ray scattering analysis, we confirm that MosV-RBP and NarV-RBP form homodimeric arrangements that are distinct from those adopted by other paramyxovirus RBPs. Altogether, this investigation provides a molecular-level blueprint of the narmovirus RBP that broadens our understanding of the structural space and functional diversity available to paramyxovirus RBPs.
|
Sep 2023
|
|
I02-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[9495]
Open Access
Abstract: Titin is the largest protein found in nature and spans half a sarcomere in vertebrate striated muscle. The protein has multiple functions, including in the organisation of the thick filament and acting as a molecular spring during the muscle contraction cycle. Missense variants in titin have been linked to both cardiac and skeletal myopathies. Titin is primarily composed of tandem repeats of immunoglobulin and fibronectin type III (Fn3) domains in a variety of repeat patterns; however, the vast majority of these domains have not had their high-resolution structure determined experimentally. Here, we present the crystal structures of seven wild type titin Fn3 domains and two harbouring rare missense variants reported in hypertrophic cardiomyopathy (HCM) patients. All domains present the typical Fn3 fold, with the domains harbouring variants reported in HCM patients retaining the wild-type conformation. The effect on domain folding and stability were assessed for five rare missense variants found in HCM patients: four caused thermal destabilization of between 7 and 13 °C and one prevented the folding of its domain. The structures also allowed us to locate the positions of residues whose mutations have been linked to congenital myopathies and rationalise how they convey their deleterious effects. We find no evidence of physiological homodimer formation, excluding one hypothesised mechanism as to how titin variants could exert pathological effects.
|
Sep 2023
|
|