I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[22891, 18136]
Abstract: Among several proteins participating in the olfactory perception process of insects, Odorant Binding Proteins (OBPs) are today considered valid targets for the discovery of compounds that interfere with their host-detection behavior. The 3D structures of Anopheles gambiae mosquito AgamOBP1 in complex with the known synthetic repellents DEET and Icaridin have provided valuable information on the structural characteristics that govern their selective binding.
However, no structure of a plant-derived repellent bound to an OBP has been available until now. Herein, we present the novel three-dimensional crystal structures of AgamOBP5 in complex with two natural phenolic monoterpenoid repellents, Carvacrol and Thymol, and the MPD molecule.
Structural analysis revealed that both monoterpenoids occupy a binding site (Site-1) by adopting two alternative conformations. An additional Carvacrol was also bound to a secondary site (Site-2) near the central cavity entrance. A protein-ligand hydrogen-bond network supplemented by van der Waals interactions spans the entire binding cavity, bridging α4, α6, and α3 helices and stabilizing the overall structure.
Fluorescence competition and Differential Scanning Calorimetry experiments verified the presence of two binding sites and the stabilization effect on AgamOBP5. While Carvacrol and Thymol bind to Site-1 with equal affinity in the submicromolar range, they exhibit a significantly lower and distinct binding capacity for Site-2 with Kd's of ~7 μΜ and ~18 μΜ, respectively.
Finally, a comparison of AgamOBP5 complexes with the AgamOBP4-Indole structure revealed that variations of ligand-interacting aminoacids such as A109T, I72M, A112L, and A105T cause two structurally similar and homologous proteins to display different binding specificities.
|
Mar 2023
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Mona M.
Katariya
,
Matthew
Snee
,
Richard B.
Tunnicliffe
,
Madeline E.
Kavanagh
,
Helena I. M.
Boshoff
,
Cecilia N.
Amadi
,
Colin W.
Levy
,
Andrew W.
Munro
,
Chris
Abell
,
David
Leys
,
Anthony G.
Coyne
,
Kirsty J.
Mclean
Diamond Proposal Number(s):
[17773, 24447]
Open Access
Abstract: Mycobacterium tuberculosis (Mtb) was responsible for approximately 1.6 million deaths in 2021. With the emergence of extensive drug resistance, novel therapeutic agents are urgently needed, and continued drug discovery efforts required. Host-derived lipids such as cholesterol support Mtb growth, and are also suspected to function in immunomodulation, with links to persistence and immune evasion. Mtb cytochrome P450 (CYP) enzymes facilitate key steps in lipid catabolism and thus present potential targets for inhibition. Here we present a series of compounds based on an ethyl 5-(pyridin-4-yl)-1H-indole-2-carboxylate pharmacophore which bind strongly to both Mtb cholesterol oxidases CYP125 and CYP142. Using a structure-guided approach, combined with biophysical characterization, compounds with micromolar range in-cell activity against clinically relevant drug-resistant isolates were obtained. These will support further development of much-needed additional treatment options and provide routes to probe the role of CYP125 and CYP142 in Mtb pathogenesis.
|
Mar 2023
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[18548, 25402]
Open Access
Abstract: The liver isoform of pyruvate kinase (PKL) has gained interest due to its potential capacity to regulate fatty acid synthesis involved in the progression of non-alcoholic fatty liver disease (NAFLD). Here we describe a novel series of PKL modulators that can either activate or inhibit the enzyme allosterically, from a cryptic site at the interface of two protomers in the tetrameric enzyme. Starting from urolithin D, we designed and synthesised 42 new compounds. The effect of these compounds on PKL enzymatic activity was assessed after incubation with cell lysates obtained from a liver cell line. Pronounced activation of PKL activity, up to 3.8-fold, was observed for several compounds at 10 μM, while other compounds were prominent PKL inhibitors reducing its activity to 81% at best. A structure-activity relationship identified linear-shaped sulfone-sulfonamides as activators and non-linear compounds as inhibitors. Crystal structures revealed the conformations of these modulators, which were used as a reference for designing new modulators.
|
Mar 2023
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Luisana
Avilan
,
Bruce R.
Lichtenstein
,
Gerhard
Koenig
,
Michael
Zahn
,
Mark D.
Allen
,
Liliana
Oliveira
,
Matilda
Clark
,
Victoria
Bemmer
,
Rosie
Graham
,
Harry P.
Austin
,
Graham
Dominick
,
Christopher W.
Johnson
,
Gregg T.
Beckham
,
John
Mcgeehan
,
Andrew R.
Pickford
Diamond Proposal Number(s):
[17212]
Abstract: Enzyme-based depolymerization is a viable approach for recycling of poly(ethylene terephthalate) (PET). PETase from Ideonella sakaiensis (IsPETase) is capable of PET hydrolysis under mild conditions but suffers from concentration-dependent inhibition. Here, we report that this inhibition is dependent on incubation time, the solution conditions and PET surface area. Furthermore, this inhibition is evident in other mesophilic PET-degrading enzymes to varying degrees, independent of the level of PET depolymerization activity. The inhibition has no clear structural basis, but moderately thermostable IsPETase variants exhibit reduced inhibition, and the property is completely absent in the highly thermostable HotPETase, previously engineered by directed evolution, which our simulations suggest results from reduced flexibility around the active site. This work highlights a limitation in applying natural mesophilic hydrolases for PET hydrolysis, and reveals an unexpected positive outcome of engineering these enzymes for enhanced thermostability.
|
Feb 2023
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[22563]
Open Access
Abstract: N-acetyl-d-glucosamine (GlcNAc) is a major component of bacterial cell walls. Many organisms recycle GlcNAc from the cell wall or metabolize environmental GlcNAc. The first step in GlcNAc metabolism is phosphorylation to GlcNAc-6-phosphate. In bacteria, the ROK family kinase NagK performs this activity. Although ROK kinases have been studied extensively, no ternary complex showing the two substrates has yet been observed. Here, we solved the structure of NagK from the human pathogen Plesiomonas shigelloides in complex with GlcNAc and the ATP analogue AMP-PNP. Surprisingly, PsNagK showed distinct conformational changes associated with the binding of each substrate. Consistent with this, the enzyme showed a sequential random enzyme mechanism. This indicates that the enzyme acts as a coordinated unit responding to each interaction. Our molecular dynamics modelling of catalytic ion binding confirmed the location of the essential catalytic metal. Additionally, site-directed mutagenesis confirmed the catalytic base, and that the metal-coordinating residue is essential. Together, this study provides the most comprehensive insight into the activity of a ROK kinase.
|
Feb 2023
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[26998, 22717, 28172]
Open Access
Abstract: NSP14 is a dual function enzyme containing an N-terminal exonuclease domain (ExoN) and C-terminal Guanine-N7-methyltransferase (N7-MTase) domain. Both activities are essential for the viral life cycle and may be targeted for anti-viral therapeutics. NSP14 forms a complex with NSP10, and this interaction enhances the nuclease but not the methyltransferase activity. We have determined the structure of SARS-CoV-2 NSP14 in the absence of NSP10 to 1.7 Å resolution. Comparisons with NSP14/NSP10 complexes reveal significant conformational changes that occur within the NSP14 ExoN domain upon binding of NSP10, including helix to coil transitions that facilitate the formation of the ExoN active site and provide an explanation of the stimulation of nuclease activity by NSP10. We have determined the structure of NSP14 in complex with cap analogue 7MeGpppG, and observe conformational changes within a SAM/SAH interacting loop that plays a key role in viral mRNA capping offering new insights into MTase activity. We perform an X-ray fragment screen on NSP14, revealing 72 hits bound to sites of inhibition in the ExoN and MTase domains. These fragments serve as excellent starting point tools for structure guided development of NSP14 inhibitors that may be used to treat COVID-19 and potentially other future viral threats.
|
Jan 2023
|
|
I02-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
William M.
Dawson
,
Kathryn L.
Shelley
,
Jordan M.
Fletcher
,
D. Arne
Scott
,
Lucia
Lombardi
,
Guto G.
Rhys
,
Tania J.
Lagambina
,
Ulrike
Obst
,
Antony J.
Burton
,
Jessica A.
Cross
,
George
Davies
,
Freddie J. O.
Martin
,
Francis J.
Wiseman
,
R. Leo
Brady
,
David
Tew
,
Christopher W.
Wood
,
Derek N.
Woolfson
Diamond Proposal Number(s):
[12342, 23269]
Open Access
Abstract: Differential sensing attempts to mimic the mammalian senses of smell and taste to identify analytes and complex mixtures. In place of hundreds of complex, membrane-bound G-protein coupled receptors, differential sensors employ arrays of small molecules. Here we show that arrays of computationally designed de novo peptides provide alternative synthetic receptors for differential sensing. We use self-assembling α-helical barrels (αHBs) with central channels that can be altered predictably to vary their sizes, shapes and chemistries. The channels accommodate environment-sensitive dyes that fluoresce upon binding. Challenging arrays of dye-loaded barrels with analytes causes differential fluorophore displacement. The resulting fluorimetric fingerprints are used to train machine-learning models that relate the patterns to the analytes. We show that this system discriminates between a range of biomolecules, drink, and diagnostically relevant biological samples. As αHBs are robust and chemically diverse, the system has potential to sense many analytes in various settings.
|
Jan 2023
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Andrej Emanuel
Cotman
,
Martina
Durcik
,
Davide
Benedetto Tiz
,
Federica
Fulgheri
,
Daniela
Secci
,
Maša
Sterle
,
Štefan
Možina
,
Žiga
Skok
,
Nace
Zidar
,
Anamarija
Zega
,
Janez
Ilaš
,
Lucija
Peterlin Mašič
,
Tihomir
Tomašič
,
Diarmaid
Hughes
,
Douglas L.
Huseby
,
Sha
Cao
,
Linnéa
Garoff
,
Talía
Berruga Fernández
,
Paraskevi
Giachou
,
Lisa
Crone
,
Ivailo
Simoff
,
Richard
Svensson
,
Bryndis
Birnir
,
Sergiy V.
Korol
,
Zhe
Jin
,
Francisca
Vicente
,
Maria C.
Ramos
,
Mercedes
De La Cruz
,
Björn
Glinghammar
,
Lena
Lenhammar
,
Sara R.
Henderson
,
Julia E. A.
Mundy
,
Anthony
Maxwell
,
Claren E. M.
Stevenson
,
David M.
Lawson
,
Guido V.
Janssen
,
Geert Jan
Sterk
,
Danijel
Kikelj
Diamond Proposal Number(s):
[18565, 25108]
Open Access
Abstract: We have developed compounds with a promising activity against Acinetobacter baumannii and Pseudomonas aeruginosa, which are both on the WHO priority list of antibiotic-resistant bacteria. Starting from DNA gyrase inhibitor 1, we identified compound 27, featuring a 10-fold improved aqueous solubility, a 10-fold improved inhibition of topoisomerase IV from A. baumannii and P. aeruginosa, a 10-fold decreased inhibition of human topoisomerase IIα, and no cross-resistance to novobiocin. Cocrystal structures of 1 in complex with Escherichia coli GyrB24 and (S)-27 in complex with A. baumannii GyrB23 and P. aeruginosa GyrB24 revealed their binding to the ATP-binding pocket of the GyrB subunit. In further optimization steps, solubility, plasma free fraction, and other ADME properties of 27 were improved by fine-tuning of lipophilicity. In particular, analogs of 27 with retained anti-Gram-negative activity and improved plasma free fraction were identified. The series was found to be nongenotoxic, nonmutagenic, devoid of mitochondrial toxicity, and possessed no ion channel liabilities.
|
Jan 2023
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[17221, 23620]
Open Access
Abstract: Type 4 filaments (T4F)—of which type 4 pili (T4P) are the archetype—are a superfamily of nanomachines nearly ubiquitous in prokaryotes. T4F are polymers of one major pilin, which also contain minor pilins whose roles are often poorly understood. Here, we complete the structure/function analysis of the full set of T4P pilins in the opportunistic bacterial pathogen Streptococcus sanguinis. We determined the structure of the minor pilin PilA, which is unexpectedly similar to one of the subunits of a tip-located complex of four minor pilins, widely conserved in T4F. We found that PilA interacts and dramatically stabilizes the minor pilin PilC. We determined the structure of PilC, showing that it is a modular pilin with a lectin module binding a subset of glycans prevalent in the human glycome, the host of S. sanguinis. Altogether, our findings support a model whereby the minor pilins in S. sanguinis T4P form a tip-located complex promoting adhesion to various host receptors. This has general implications for T4F.
|
Jan 2023
|
|
B21-High Throughput SAXS
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Laura C.
Clark
,
Kate E.
Atkin
,
Fiona
Whelan
,
Andrew S.
Brentnall
,
Gemma
Harris
,
Aisling M.
Towell
,
Johan P.
Turkenburg
,
Yan
Liu
,
Ten
Feizi
,
Samuel C.
Griffiths
,
Joan A.
Geoghegan
,
Jennifer R.
Potts
Diamond Proposal Number(s):
[7864, 18598]
Open Access
Abstract: Staphylococcus aureus and Staphylococcus epidermidis are frequently associated with medical device infections that involve establishment of a bacterial biofilm on the device surface. Staphylococcal surface proteins Aap, SasG and Pls are members of the Periscope Protein class and have been implicated in biofilm formation and host colonisation; they comprise a repetitive region (“B region”) and an N-terminal host colonisation domain within the “A region”, predicted to be a lectin domain. Repetitive E-G5 domains (as found in Aap, SasG and Pls) form elongated ‘stalks’ that would vary in length with repeat number, resulting in projection of the N-terminal A domain variable distances from the bacterial cell surface. Here, we present the structures of the lectin domains within A regions of SasG, Aap and Pls and a structure of the Aap lectin domain attached to contiguous E-G5 repeats, suggesting the lectin domains will sit at the tip of the variable length rod. We demonstrate that these isolated domains (Aap, SasG) are sufficient to bind to human host desquamated nasal epithelial cells. Previously, proteolytic cleavage or a deletion within the A domain have been reported to induce biofilm formation; the structures suggest a potential link between these observations. Intriguingly, whilst the Aap, SasG and Pls lectin domains bind a metal ion, they lack the non-proline cis peptide bond thought to be key for carbohydrate binding by the lectin fold. This suggestion of non-canonical ligand binding should be a key consideration when investigating the host cell interactions of these bacterial surface proteins.
|
Jan 2023
|
|