I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[28804]
Open Access
Abstract: Melt flow is critical to build quality during additive manufacturing (AM). When an external magnetic field is applied, it causes forces that alter the flow through the thermoelectric magnetohydrodynamic (TEMHD) effect, potentially altering the final microstructure. However, the extent of TEMHD forces and their underlying mechanisms, remain unclear. We trace the flow of tungsten particles using in situ high-speed synchrotron X-ray radiography and ex situ tomography to reveal the structure of TEMHD-induced flow during directed energy deposition AM (DED-AM). When no magnetic field is imposed, Marangoni convection dominates the flow, leading to a relatively even particle distribution. With a magnetic field parallel to the scan direction, TEMHD flow is induced, circulating in the cross-sectional plane, causing particle segregation to the bottom and side of the pool. Further, a downward magnetic field causes horizontal circulation, segregating particles to the other side. Our results demonstrate that TEMHD can disrupt melt pool flow during DED-AM.
|
Jun 2023
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
A.
Koko
,
S.
Singh
,
S.
Barhli
,
T.
Connolley
,
N. T.
Vo
,
T.
Wigger
,
D.
Liu
,
Y.
Fu
,
J.
Réthoré
,
J.
Lechambre
,
J.-Y.
Buffiere
,
T. J.
Marrow
Diamond Proposal Number(s):
[12585]
Open Access
Abstract: The propagation rate of a fatigue crack in a nodular cast iron, loaded in cyclic tension, has been studied in situ by X-ray computed tomography and digital volume correlation. The semi-elliptical crack initiated from an asymmetric corner notch and evolved to a semi-circular shape, initially with a higher growth rate towards one edge of the notch before the propagation rate along the crack front became essentially independent of po-sition. The phase congruency of the displacement field was used to measure the crack shape. The three-dimensional stress intensity factors were calculated via a linear elastic finite element model that used the displacement fields around the crack front as the boundary conditions. Closure of the crack tip region was observed. The cyclic change in the local mode I opening of the crack tip determined the local fatigue crack propaga-tion rate along the crack front.
|
May 2023
|
|
B16-Test Beamline
DIAD-Dual Imaging and Diffraction Beamline
E01-JEM ARM 200CF
E02-JEM ARM 300CF
I08-Scanning X-ray Microscopy beamline (SXM)
I12-JEEP: Joint Engineering, Environmental and Processing
I13-1-Coherence
I13-2-Diamond Manchester Imaging
I14-Hard X-ray Nanoprobe
|
Open Access
Abstract: Hard dental tissues possess a complex hierarchical structure that is particularly evident in enamel, the most mineralised substance in the human body. Its complex and interlinked organisation at the Ångstrom (crystal lattice), nano-, micro-, and macro-scales is the result of evolutionary optimisation for mechanical and functional performance: hardness and stiffness, fracture toughness, thermal, and chemical resistance. Understanding the physical–chemical–structural relationships at each scale requires the application of appropriately sensitive and resolving probes. Synchrotron X-ray techniques offer the possibility to progress significantly beyond the capabilities of conventional laboratory instruments, i.e., X-ray diffractometers, and electron and atomic force microscopes. The last few decades have witnessed the accumulation of results obtained from X-ray scattering (diffraction), spectroscopy (including polarisation analysis), and imaging (including ptychography and tomography). The current article presents a multi-disciplinary review of nearly 40 years of discoveries and advancements, primarily pertaining to the study of enamel and its demineralisation (caries), but also linked to the investigations of other mineralised tissues such as dentine, bone, etc. The modelling approaches informed by these observations are also overviewed. The strategic aim of the present review was to identify and evaluate prospective avenues for analysing dental tissues and developing treatments and prophylaxis for improved dental health.
|
Apr 2023
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[28804]
Open Access
Abstract: Directed energy deposition (DED) is a promising additive manufacturing technique for repair; however, DED is prone to surface waviness (humping) in thin-walled sections, which increases residual stresses and crack susceptibility, and lowers fatigue performance. Currently, the crack formation mechanism in DED is not well understood due to a lack of operando monitoring methods with high spatiotemporal resolution. Here, we use inline coherent imaging (ICI) to optically monitor surface topology and detect cracking in situ, coupled with synchrotron X-ray imaging for observing sub-surface crack healing and growth. For the first time, ICI was aligned off-axis (24° relative to laser), enabling integration into a DED machine with no alterations to the laser delivery optics. We achieved accurate registration laterally (<10 µm) and in depth (<3 µm) between ICI measurements and the laser beam position using a single-element MEMS scanner and a custom calibration plate. ICI surface topology is verified with corresponding radiographs (correlation >0.93), directly tracking surface roughness and waviness. We intentionally seed humping into thin-wall builds of nickel super-alloy CM247LC, locally inducing cracking in surface valleys. Crack openings as small as 7 µm were observed in situ using ICI, including sub-surface signal. By quantifying both humping and cracking, we demonstrate that ICI is a viable tool for in situ crack detection.
|
Apr 2023
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Open Access
Abstract: The Mg-Zn-Ca system has previously been proposed as the most suitable biodegradable candidate for biomedical applications. In this work, a series of ribbon specimens was fabricated using a melt-spinning technique to explore the glass-forming ability of the Mg-Zn-Ca system along the concentration line of 7 at.% of calcium. A glassy state is confirmed for Mg50Zn43Ca7, Mg60Zn33Ca7, and Mg70Zn23Ca7. Those samples were characterised by standard methods to determine their mass density, hardness, elastic modulus, and crystallisation temperatures during devitrification. Their amorphous structure is described by means of pair distribution functions obtained by high-energy X-ray and neutron diffraction (HEXRD and ND) measurements performed at large-scale facilities. The contributions of pairs Mg-Mg, Mg-Zn, and Zn-Zn were identified. In addition, a transformation process from an amorphous to crystalline structure is followed in situ by HEXRD for Mg60Zn33Ca7 and Mg50Zn43Ca7. Intermetallic compounds IM1 and IM3 and hcp-Mg phase are proposed to be formed in multiple crystallisation events.
|
Mar 2023
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[25682]
Open Access
Abstract: The crystallographic texture development during processing of dual-phase Ti alloys like Ti-6Al-4 V is of fundamental technological importance. However, measuring texture in both phases in these materials is a significant challenge because of the spatial inhomogeneity of the texture and low volume fraction of the minority β-phase at room temperature. Here we demonstrate how synchrotron X-ray diffraction can be used to overcome these difficulties and measure texture and texture variation in hot-rolled samples in a reproducible manner. The texture in hot-rolled Ti-64 was calculated from 2D synchrotron diffraction patterns obtained along different directions. The data was analysed using MAUD, which is based on Rietveld refinement of the diffracted intensities, and using a Fourier series based analysis method, that extracts intensities directly from the 2D diffraction patterns, and then uses the open-source software MTEX to fit an orientation distribution function (ODF). By comparing the results with faithful EBSD measurements, we show that the Fourier series method produces much more accurate texture measurements, especially for the minority β-phase. We also show that a minimum of 2, and preferably 3, different measurement orientations are needed to fully represent the texture. This implies that measurements of texture which rely on diffraction data from a single sample orientation, like in fast in-situ studies or spatially resolved measurements, can only provide qualitative information and must be interpreted with care.
|
Mar 2023
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[20096]
Open Access
Abstract: Laser additive manufacturing is transforming several industrial sectors, especially the directed energy deposition process. A key challenge in the widespread uptake of this emerging technology is the formation of undesirable microstructural features such as pores, cracks, and large epitaxial grains. The trial and error approach to establish the relationship between process parameters and material properties is problematic due to the transient nature of the process and the number of parameters involved. In this work, the relationship between process parameters, melt pool geometry and quality of build measures, using directed energy deposition additive manufacturing for IN718, is quantified using neural networks as generalised regressors in a statistically robust manner. The data was acquired using in-situ synchrotron x-ray imaging providing unique and accurate measurements for our analysis. An analysis of the variations across repeated measurements show heteroscedastic error characteristics that are accounted for using a principled nonlinear data transformation method. The results of the analysis show that surface roughness correlates with melt pool geometry while the track height directly correlates with process parameters indicating a potential to directly control efficiency and layer thickness while independently minimising surface roughness.
|
Mar 2023
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[30411]
Abstract: Superelastic alloys based on Ti-Nb have potential in the aerospace sector for vibration damping applications, due to their wide mechanical hysteresis and tuneable properties. However, their uptake is currently limited by functional fatigue, whereby a degradation in properties is seen on cyclic loading. To understand the mechanisms that underpin this change in behaviour, a combination of ex situ and in situ testing was used to characterise the evolution of the mechanical response in a commercial Ti-Nb based alloy. It was found that the behaviour of these materials changes via a two-step mechanism, driven by the accumulation of transformation related defects and their associated stress fields. This understanding rationalises many discrepancies within the literature and highlights how the overall shape of the load response of these alloys is dominated by changes occurring only in specific regions of the material.
|
Feb 2023
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[26476]
Abstract: Two new multicomponent crystalline phases of fenbendazole (FNB), a benzimidazole-based anthelmintic drug, with maleic and oxalic acids have been obtained, and their structural and physicochemical properties carefully investigated. The crystal structures of the solid forms have been determined from powder X-ray diffraction data. The positions of dynamic hydrogen atoms have been further refined via dispersion-corrected density functional theory calculations, which validated the salt nature of the resulting solid forms by demonstrating proton transport from the corresponding acids to the FNB molecule. The in vitro dissolution performance of the solid forms in aqueous media at different pH values, as well as the in vivo anthelmintic efficacy of fenbendazole on the laboratory model of Trichinella spiralis infection in mice have been evaluated and compared to that of the previously reported salt of FNB with p-toluenesulfonic acid. A relationship between the in vitro dissolution characteristics and the in vivo therapeutic action has been revealed and discussed.
|
Feb 2023
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Open Access
Abstract: NASA, ESA and the UK are collaborating on a Mars Sample Return (MSR) mission which aims to retrieve drill cores of Martian rock for terrestrial analysis, starting with the Mars2020 rover which landed successfully in Jezero Crater in Feb. 2021. Up to 30 samples, inside sealed titanium sample tubes, are planned to be returned to Earth in later missions. Due to the potential for back-contamination of Earth from possible extant life on Mars, strict contamination control measures must be taken for the purposes of planetary protection, as well as to prevent contamination of the samples by Earth’s environment. These measures place restrictions on the way measurements can be performed on the samples until they have been sterilised or judged safe. As the first step of scientific analysis, all samples will undergo a set of measurements called Pre-Basic Characterisation. Pre-BC will include weighing, X-ray CT, and magnetic measurements. These data along with Basic Characterisation data will be used to decide experimental plans for multi instrument analyses on the Mars samples. X-ray Diffraction (XRD) is currently planned for a later stage of sample analysis after the sample tubes have been opened due to limitations with conventional commercial X-ray diffractometers. [1, 2]
While a conventional X-ray tube cannot provide an appropriate X-ray beam, a synchrotron source is capable of much higher intensities and precise wavelength selectivity. Synchrotron facilities also allow more suitable diffraction geometries for the size and shape of sample expected from MSR. We have carried out experiments with the help of Diamond Light Source’s I12-JEEP beamline to test the feasibility of XRD analysis of samples in sealed Mars2020 sample tubes and suitable instrument parameters for XRD of these samples. Titanium tubes were prepared as analogues to Mars2020 sample tubes. Three different geological analogues were used in place of the Mars samples: an Icelandic basaltic sand, a calcareous mudstone from Watchet Bay, UK, and a Devonian Fine Grained Sandstone, UK. Two different methods for preventing unwanted diffraction signal from the sample tube walls have also been tested: subtracting the diffraction spectrum of an empty tube from the tube-with-sample spectrum, and using energy-dispersive X-ray diffraction to exclude tube wall signal. We show that quantitative XRD phase analysis can be successfully carried out on returned Mars samples in unopened sample tubes using a synchrotron X-ray source, and thus could be included in the Pre-BC phase of returned sample science. This would provide mineralogical data much earlier in the sample science process, improving decision-making around sample science, curation, and handling.
|
Feb 2023
|
|