B18-Core EXAFS
B22-Multimode InfraRed imaging And Microspectroscopy
|
Wanpeng
Lu
,
Claudia E.
Tait
,
Gokay
Avci
,
Xian'E
Li
,
Agamemnon E.
Crumpton
,
Paul
Shao
,
Catherine M.
Aitchison
,
Fabien
Ceugniet
,
Yuyun
Yao
,
Mark D.
Frogley
,
Donato
Decarolis
,
Nan
Yao
,
Kim E.
Jelfs
,
Iain
Mcculloch
Open Access
Abstract: With the pressing urgency to reduce carbon footprint, photocatalytic carbon dioxide reduction has attracted growing attention as a sustainable mitigating option. Considering the important role of catalytic active sites (CASs) in the catalytic processes, control and design of the density and environment of CASs could enhance the catalyst performance. Herein, we report a novel metal–covalent organic framework (MCOF), MCOF-Co-315, featuring earth-abundant Co cocatalysts and conjugation through a covalently bonded backbone. MCOF-Co-315 showed a CO production rate of 1616 μmol g–1 h–1 utilizing Ru(bpy)3Cl2 as photosensitizer and triethanolamine (TEOA) as sacrificial electron donor with a 1.5 AM filter, vis mirror module (390–740 nm), and irradiation intensity adjusted to 1 sun and an especially outstanding apparent quantum yield (AQY) of 9.13% at 450 nm. The photocatalytic reaction was studied with electron paramagnetic resonance (EPR) spectroscopy, X-ray absorption near-edge structure (XANES), and in situ synchrotron Fourier Transform Infrared (FT-IR) spectroscopy, and an underlying mechanism is proposed.
|
Mar 2025
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Diamond Proposal Number(s):
[30369]
Open Access
Abstract: Triboelectric nanogenerator (TENG) based on the coupling effect of triboelectrification and electrostatic induction can convert mechanical motions into electric energy. Recent studies have found that metal–organic framework materials are promising triboelectric materials due to their large surface area and excellent tunability. In this study, we incorporated isostructural zeolitic imidazolate frameworks, ZIF-8-X (X = CH3, Br, Cl), into poly(vinylidene fluoride) (PVDF) electrospun fibers and assembled them in TENG devices to investigate the underlying relationship between functional group electronegativity (via varied imidazolate linkers) and triboelectric output performance. Results show that ZIF-8-Cl/PVDF composite fiber demonstrated the highest average voltage and current output of 312.4 ± 2.0 V and 4.90 ± 0.07 μA, respectively, which are 3.8 and 5.5 times higher than that of the pristine PVDF. The practicality of ZIF-8-X-based TENG was tested for harvesting energy from oscillatory motions to power up LEDs and capacitors. A freestanding mode TENG based on ZIF-8-Cl was also designed to harvest rotational energy without physical contact for wider applications. The working mechanism of ZIF-8-X-based TENG was also revealed through nanoscale-resolved chemical studies, providing valuable insights into the design of MOF materials for improved performance of TENGs.
|
Feb 2025
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Diamond Proposal Number(s):
[36374]
Open Access
Abstract: Polydimethylsiloxane (PDMS) is one of the most widely used materials in triboelectric nanogenerators (TENGs) due to its remarkable flexibility and robustness, yet its triboelectric output often limits practical applications. In this study, we presented a method for tuning the triboelectric properties of PDMS through surface functionalization using self-assembled monolayers of siloxane-based molecules. Our results demonstrate that the functionalized PDMS films exhibit distinct charge donating or withdrawing behaviours, confirmed by molecular simulations and experimental characterizations. Notably, trimethylsiloxyphenylmethacrylate (TMSPMA) functionalized PDMS achieved the highest voltage of 189 ± 6 V and current output of 6.75 ± 0.26 µA, leading to a 2-fold increase in peak power density compared with the standard PDMS. Moreover, to elucidate the charge transfer mechanisms between the functionalized PDMS and indium tin oxide (ITO) electrode, nanoanalytical techniques such as nano-Fourier transform infrared spectroscopy (nano-FTIR) and Kelvin probe force microscopy (KPFM) were employed to evaluate the surface chemical and electrical properties at the local scale. This research not only enhances the understanding of polymer/metal contact electrification but also opens avenues for optimizing TENG efficiency through targeted surface functionalization strategies.
|
Feb 2025
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Abstract: The removal of SO2 from flue gas remains a challenge. Adsorption-based separation of SO2 using porous materials has been proposed as a more energy-efficient and cost-effective alternative to more traditional methods such as cryogenic distillations. Here we report a flexible hydrogen-bonded organic framework (HOF-NKU-1) that enables the sieving of SO2 through the guest-adaptive response and shape-memory effect of the material. HOF-NKU-1 exhibits a high selectivity of 7,331 for the separation of SO2/CO2 and a high SO2 storage density of 3.27 g cm−3 within the pore space at ambient conditions. The hydrophobic nature of HOF-NKU-1 enables high dynamic SO2 uptake and SO2 recovery, even in conditions of 95% humidity. The SO2/CO2 separation mechanism is studied through combinatorial gas sorption isotherms, breakthrough experiments and single-crystal diffraction studies, paving the way for the development of multifunctional shape-memory porous materials in the future.
|
Feb 2025
|
|
B18-Core EXAFS
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Zhaodong
Zhu
,
Mengtian
Fan
,
Meng
He
,
Bing
An
,
Yinlin
Chen
,
Shaojun
Xu
,
Tianze
Zhou
,
Alena M.
Sheveleva
,
Meredydd
Kippax-Jones
,
Lutong
Shan
,
Yongqiang
Chen
,
Hamish
Cavaye
,
Jeff
Armstrong
,
Svemir
Rudic
,
Stewart F.
Parker
,
William
Thornley
,
Evan
Tillotson
,
Matthew
Lindley
,
Shenglong
Tian
,
Daniel
Lee
,
Shiyu
Fu
,
Mark D.
Frogley
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Sarah J.
Haigh
,
Sihai
Yang
Abstract: The methanol-to-olefins (MTO) process has the potential to bridge future gaps in the supply of sustainable lower olefins. Promoting the selectivity of propylene and ethylene and revealing the catalytic role of active sites are challenging goals in MTO reactions. Here, we report a novel heteroatomic silicoaluminophosphate (SAPO) zeolite, SAPO-34-Ta, which incorporates active tantalum(V) sites within the framework to afford an optimal distribution of acidity. SAPO-34-Ta exhibits a remarkable total selectivity of 85.8% for propylene and ethylene with a high selectivity of 54.9% for propylene on full conversion of methanol at 400 oC. In situ and operando synchrotron powder X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy and inelastic neutron scattering, coupled with theoretical calculations, reveal trimethyloxonium as the key reaction intermediate, promoting the formation of first carbon-carbon bonds in olefins. The tacit cooperation between tantalum(V) and Brønsted acid sites within SAPO-34 provides an efficient platform for selective production of lower olefins from methanol.
|
Jan 2025
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Yu
Han
,
Wenyuan
Huang
,
Meng
He
,
Bing
An
,
Yinlin
Chen
,
Xue
Han
,
Lan
An
,
Meredydd
Kippax-Jones
,
Jiangnan
Li
,
Yuhang
Yang
,
Mark D.
Frogley
,
Cheng
Li
,
Danielle
Crawshaw
,
Pascal
Manuel
,
Svemir
Rudic
,
Yongqiang
Chen
,
Ian
Silverwood
,
Luke L.
Daemen
,
Anibal J.
Ramirez-Cuesta
,
Sarah J.
Day
,
Stephen P.
Thompson
,
Ben F.
Spencer
,
Marek
Nikiel
,
Daniel
Lee
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[37155, 36474]
Open Access
Abstract: Capture of trace benzene is an important and challenging task. Metal–organic framework materials are promising sorbents for a variety of gases, but their limited capacity towards benzene at low concentration remains unresolved. Here we report the adsorption of trace benzene by decorating a structural defect in MIL-125-defect with single-atom metal centres to afford MIL-125-X (X = Mn, Fe, Co, Ni, Cu, Zn; MIL-125, Ti8O8(OH)4(BDC)6 where H2BDC is 1,4-benzenedicarboxylic acid). At 298 K, MIL-125-Zn exhibits a benzene uptake of 7.63 mmol g−1 at 1.2 mbar and 5.33 mmol g−1 at 0.12 mbar, and breakthrough experiments confirm the removal of trace benzene (from 5 to <0.5 ppm) from air (up to 111,000 min g−1 of metal–organic framework), even after exposure to moisture. The binding of benzene to the defect and open Zn(II) sites at low pressure has been visualized by diffraction, scattering and spectroscopy. This work highlights the importance of fine-tuning pore chemistry for designing adsorbents for the removal of air pollutants.
|
Nov 2024
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Diamond Proposal Number(s):
[26320]
Abstract: New treatments are urgently required for osteosarcoma, a type of cancer that starts in the bones and mainly occurs in children and teenagers. Current treatments mostly rely on DNA-damaging agents such as cisplatin, which was the first platinum-based anti-cancer metallodrug, introduced in the clinics in the 1970s. However, the in vivo anticancer activity of cisplatin is severely limited by low bioavailability, serious side effects and acquired resistance. In order to enhance its effectiveness and improve patient outcomes, a better understanding of how the drug works - particularly at the cellular and subcellular levels - is crucial.
Previous studies using synchrotron-based Fourier Transform IR microspectroscopy (SR micro-FTIR), micro-Raman and inelastic neutron scattering (INS) offered insights into the drug’s metabolic effect, and the cellular response to treatment. However, these techniques did not provide a high enough spatial resolution to allow an accurate examination of the drug´s effect on specific sub-cellular regions. In work recently published in in Scientific Reports, researchers from the University of Coimbra (Portugal), in collaboration with beamline B22 staff, used synchrotron-based infrared nanospectroscopy (SR nano-FTIR) at Diamond to reveal the action of a consolidated metallodrug at the subcellular scale. Their study is the first life sciences application of scattering-Scanning Near-field Optical Microscopy (s-SNOM) at Diamond and is expected to foster the development of novel metal-based chemotherapeutic agents against osteosarcoma.
|
Nov 2024
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Dukula
De Alwis Jayasinghe
,
Yinlin
Chen
,
Jiangnan
Li
,
Justyna M.
Rogacka
,
Meredydd
Kippax-Jones
,
Wanpeng
Lu
,
Sergey
Sapchenko
,
Jinyue
Yang
,
Sarayute
Chansai
,
Tianze
Zhou
,
Lixia
Guo
,
Yujie
Ma
,
Longzhang
Dong
,
Daniil
Polyukhov
,
Lutong
Shan
,
Yu
Han
,
Danielle
Crawshaw
,
Xiangdi
Zeng
,
Zhaodong
Zhu
,
Lewis
Hughes
,
Mark D.
Frogley
,
Pascal
Manuel
,
Svemir
Rudic
,
Yongqiang
Chen
,
Christopher
Hardacre
,
Martin
Schroeder
,
Sihai
Yang
Open Access
Abstract: Ammonia (NH3) production in 2023 reached 150 million tons and is associated with potential concomitant production of up to 500 million tons of CO2 each year. Efforts to produce green NH3 are compromised since it is difficult to separate using conventional condensation chillers, but in situ separation with minimal cooling is challenging. While metal–organic framework materials offer some potential, they are often unstable and decompose in the presence of caustic and corrosive NH3. Here, we address these challenges by developing a pore-expansion strategy utilizing the flexible phosphonate framework, STA-12(Ni), which shows exceptional stability and capture of NH3 at ppm levels at elevated temperatures (100–220 °C) even under humid conditions. A remarkable NH3 uptake of 4.76 mmol g–1 at 100 μbar (equivalent to 100 ppm) is observed, and in situ neutron powder diffraction, inelastic neutron scattering, and infrared microspectroscopy, coupled with modeling, reveal a pore expansion from triclinic to a rhombohedral structure on cooperative binding of NH3 to unsaturated Ni(II) sites and phosphonate groups. STA-12(Ni) can be readily engineered into pellets or monoliths without losing adsorption capacity, underscoring its practical potential.
|
Nov 2024
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Yu
Han
,
David
Brooks
,
Meng
He
,
Yinlin
Chen
,
Wenyuan
Huang
,
Boya
Tang
,
Bing
An
,
Xue
Han
,
Meredydd
Kippax-Jones
,
Mark D.
Frogley
,
Sarah J.
Day
,
Stephen P.
Thompson
,
Svemir
Rudic
,
Yongqiang
Chen
,
Luke L.
Daemen
,
Anibal J.
Ramirez-Cuesta
,
Catherine
Dejoie
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[33115, 30398]
Open Access
Abstract: The functionalization of metal–organic frameworks (MOFs) to enhance the adsorption of benzene at trace levels remains a significant challenge. Here, we report the exceptional adsorption of trace benzene in a series of zirconium-based MOFs functionalized with chloro groups. Notably, MFM-68-Cl2, constructed from an anthracene linker incorporating chloro groups, exhibits a remarkable benzene uptake of 4.62 mmol g–1 at 298 K and 0.12 mbar, superior to benchmark materials. In situ synchrotron X-ray diffraction, Fourier transform infrared microspectroscopy, and inelastic neutron scattering, coupled with density functional theory modeling, reveal the mechanism of binding of benzene in these materials. Overall, the excellent adsorption performance is promoted by an unprecedented cooperation between chloro-groups, the optimized pore size, aromatic functionality, and the flexibility of the linkers in response to benzene uptake in MFM-68-Cl2. This study represents the first example of enhanced adsorption of trace benzene promoted by −CH···Cl and Cl···π interactions in porous materials.
|
Oct 2024
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[31420, 32898, 37199]
Open Access
Abstract: Hemoglycin, a space polymer of glycine and iron, has been identified in the carbonaceous chondritic meteorites Allende, Acfer 086, Kaba, Sutter's Mill and Orgueil. Its core form has a mass of 1494 Da and is basically an antiparallel pair of polyglycine strands linked at each end by an iron atom. The polymer forms two- and three- dimensional lattices with an inter-vertex distance of 4.9 nm. Here the extraction technique for meteorites is applied to a 2.1 Gya fossil stromatolite to reveal the presence of hemoglycin by mass spectrometry. Intact ooids from a recent (3000 Ya) stromatolite exhibited the same visible hemoglycin fluorescence in response to x-rays as an intact crystal from the Orgueil meteorite. X-ray analysis confirmed the existence in ooids of an internal three-dimensional lattice of 4.9 nm inter-vertex spacing, matching the spacing of lattices in meteoritic crystals. FTIR measurements of acid-treated ooid and a Sutter's Mill meteoritic crystal both show the presence, via the splitting of the Amide I band, of an extended anti-parallel beta sheet structure. It seems probable that the copious in-fall of carbonaceous meteoritic material, from Archaean times onward, has left traces of hemoglycin in sedimentary carbonates and potentially has influenced ooid formation.
|
Oct 2024
|
|