I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[13587]
Open Access
Abstract: Isoelectronic metal fluoride transition state analogue (TSA) complexes, MgF3– and AlF4–, have proven to be immensely useful in understanding mechanisms of biological motors utilizing phosphoryl transfer. Here we report a previously unobserved octahedral TSA complex, MgF3(H2O)−, in a 1.5 Å resolution Zika virus NS3 helicase crystal structure. 19F NMR provided independent validation and also the direct observation of conformational tightening resulting from ssRNA binding in solution. The TSA stabilizes the two conformations of motif V of the helicase that link ATP hydrolysis with mechanical work. DFT analysis further validated the MgF3(H2O)− species, indicating the significance of this TSA for studies of biological motors.
|
Feb 2021
|
|
I03-Macromolecular Crystallography
|
Nicholas G. S.
Mcgregor
,
Joan
Coines
,
Valentina
Borlandelli
,
Satoko
Amaki
,
Marta
Artola
,
Alba
Nin‐hill
,
Daniël
Linzel
,
Chihaya
Yamada
,
Takatoshi
Arakawa
,
Akihiro
Ishiwata
,
Yukishige
Ito
,
Gijsbert A.
Marel
,
Jeroen D. C.
Codée
,
Shinya
Fushinobu
,
Herman S.
Overkleeft
,
Carme
Rovira
,
Gideon J.
Davies
Diamond Proposal Number(s):
[18598]
Abstract: The recent discovery of zinc‐dependent retaining glycoside hydrolases (GHs), with active sites built around a Zn(Cys)3(Glu) coordination complex, has presented unresolved mechanistic questions. In particular, the proposed mechanism, depending on a Zn‐coordinated cysteine nucleophile and passing through a thioglycosyl enzyme intermediate, remains controversial. This is primarily due to the expected stability of the intermediate C−S bond. To facilitate the study of this atypical mechanism, we report the synthesis of a cyclophellitol‐derived β‐l‐arabinofuranosidase inhibitor, hypothesised to react with the catalytic nucleophile to form a non‐hydrolysable adduct analogous to the mechanistic covalent intermediate. This β‐l‐arabinofuranosidase inhibitor reacts exclusively with the proposed cysteine thiol catalytic nucleophiles of representatives of GH families 127 and 146. X‐ray crystal structures determined for the resulting adducts enable MD and QM/MM simulations, which provide insight into the mechanism of thioglycosyl enzyme intermediate breakdown. Leveraging the unique chemistry of cyclophellitol derivatives, the structures and simulations presented here support the assignment of a zinc‐coordinated cysteine as the catalytic nucleophile and illuminate the finely tuned energetics of this remarkable metalloenzyme clan.
|
Feb 2021
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[12788]
Open Access
Abstract: The UbiD family of reversible (de)carboxylases depends on the recently discovered prenylated-FMN (prFMN) cofactor for activity. The model enzyme ferulic acid decarboxylase (Fdc1) decarboxylates unsaturated aliphatic acids via a reversible 1,3-cycloaddition process. Protein engineering has extended the Fdc1 substrate range to include (hetero)aromatic acids, although catalytic rates remain poor. This raises the question how efficient decarboxylation of (hetero)aromatic acids is achieved by other UbiD family members. Here, we show that the Pseudomonas aeruginosa virulence attenuation factor PA0254/HudA is a pyrrole-2-carboxylic acid decarboxylase. The crystal structure of the enzyme in the presence of the reversible inhibitor imidazole reveals a covalent prFMN–imidazole adduct is formed. Substrate screening reveals HudA and selected active site variants can accept a modest range of heteroaromatic compounds, including thiophene-2-carboxylic acid. Together with computational studies, our data suggests prFMN covalent catalysis occurs via electrophilic aromatic substitution and links HudA activity with the inhibitory effects of pyrrole-2-carboxylic acid on P. aeruginosa quorum sensing.
|
Feb 2021
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[20229]
Open Access
Abstract: RcsB is a transcriptional regulator that controls expression of numerous genes in enteric bacteria. RcsB accomplishes this role alone or in combination with auxiliary transcriptional factors independently or dependently of phosphorylation. To understand the mechanisms by which RcsB regulates such large number of genes, we performed structural studies as well as in vitro and in vivo functional studies with different RcsB variants. Our structural data reveal that RcsB binds promoters of target genes such as rprA and flhDC in a dimeric active conformation. In this state, the RcsB homodimer docks the DNA-binding domains into the major groove of the DNA, facilitating an initial weak read-out of the target sequence. Interestingly, comparative structural analyses also show that DNA binding may stabilize an active conformation in unphosphorylated RcsB. Furthermore, RNAseq performed in strains expressing wild-type or several RcsB variants provided new insights into the contribution of phosphorylation to gene regulation and assign a potential role of RcsB in controlling iron metabolism. Finally, we delimited the RcsB box for homodimeric active binding to DNA as the sequence TN(G/A)GAN4TC(T/C)NA. This RcsB box was found in promoter, intergenic and intragenic regions, facilitating both increased or decreased gene transcription.
|
Feb 2021
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Iain W.
Mcnae
,
James
Kinkead
,
Divya
Malik
,
Li-hsuan
Yen
,
Martin K.
Walker
,
Chris
Swain
,
Scott P.
Webster
,
Nick
Gray
,
Peter M.
Fernandes
,
Elmarie
Myburgh
,
Elizabeth
Blackburn
,
Ryan
Ritchie
,
Carol
Austin
,
Martin A.
Wear
,
Adrian J.
Highton
,
Andrew J.
Keats
,
Antonio
Vong
,
Jacqueline
Dornan
,
Jeremy C.
Mottram
,
Paul A. M.
Michels
,
Simon
Pettit
,
Malcolm D.
Walkinshaw
Diamond Proposal Number(s):
[9487, 13550]
Open Access
Abstract: The parasitic protist Trypanosoma brucei is the causative agent of Human African Trypanosomiasis, also known as sleeping sickness. The parasite enters the blood via the bite of the tsetse fly where it is wholly reliant on glycolysis for the production of ATP. Glycolytic enzymes have been regarded as challenging drug targets because of their highly conserved active sites and phosphorylated substrates. We describe the development of novel small molecule allosteric inhibitors of trypanosome phosphofructokinase (PFK) that block the glycolytic pathway resulting in very fast parasite kill times with no inhibition of human PFKs. The compounds cross the blood brain barrier and single day oral dosing cures parasitaemia in a stage 1 animal model of human African trypanosomiasis. This study demonstrates that it is possible to target glycolysis and additionally shows how differences in allosteric mechanisms may allow the development of species-specific inhibitors to tackle a range of proliferative or infectious diseases.
|
Feb 2021
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Lorenzo
Maso
,
Matteo
Trande
,
Stefano
Liberi
,
Giulia
Moro
,
Elise
Daems
,
Sara
Linciano
,
Frank
Sobott
,
Sonia
Covaceuszach
,
Alberto
Cassetta
,
Silvano
Fasolato
,
Ligia M.
Moretto
,
Karolien
De Wael
,
Laura
Cendron
,
Alessandro
Angelini
Diamond Proposal Number(s):
[21741]
Abstract: Perfluorooctanoic acid (PFOA) is a toxic compound that is absorbed and distributed throughout the body by noncovalent binding to serum proteins such as human serum albumin (hSA). Though the interaction between PFOA and hSA has been already assessed using various analytical techniques, a high resolution and detailed analysis of the binding mode is still lacking. We report here the crystal structure of hSA in complex with PFOA and a medium‐chain saturated fatty acid (FA). A total of eight distinct binding sites, four occupied by PFOAs and four by FAs, have been identified. In solution binding studies confirmed the 4:1 PFOA‐hSA stoichiometry and revealed the presence of one high and three low affinity binding sites. Competition experiments with known hSA‐binding drugs allowed locating the high affinity binding site in sub‐domain IIIA. The elucidation of the molecular basis of the interaction between PFOA and hSA might provide not only a better assessment of the absorption and elimination mechanisms of these compounds in vivo but also have implications for the development of novel molecular receptors for diagnostic and biotechnological applications.
|
Feb 2021
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Anka
Lucic
,
Philip
Hinchliffe
,
Tika R.
Malla
,
Catherine L.
Tooke
,
Jurgen
Brem
,
Karina
Calvopina
,
Christopher T.
Lohans
,
Patrick
Rabe
,
Michael A.
Mcdonough
,
Timothy
Armistead
,
Allen M.
Orville
,
James
Spencer
,
Christopher J.
Schofield
Diamond Proposal Number(s):
[17212, 23269, 18069]
Open Access
Abstract: Penems have demonstrated potential as antibacterials and β-lactamase inhibitors; however, their clinical use has been limited, especially in comparison with the structurally related carbapenems. Faropenem is an orally active antibiotic with a C2 tetrahydrofuran (THF) ring, which is resistant to hydrolysis by some β-lactamases. We report studies on the reactions of faropenem with carbapenem-hydrolysing β-lactamases, focusing on the class A serine β-lactamase KPC-2 and the metallo β-lactamases (MBLs) VIM-2 (a subclass B1 MBL) and L1 (a B3 MBL). Kinetic studies show that faropenem is a substrate for all three β-lactamases, though it is less efficiently hydrolysed by KPC-2. Crystallographic analyses on faropenem-derived complexes reveal the opening of the β-lactam ring with formation of an imine with KPC-2, VIM-2, and L1. In the cases of the KPC-2 and VIM-2 structures, the THF ring is opened to give an alkene, but with L1 the THF ring remains intact. Solution state studies, employing NMR, were performed on L1, KPC-2, VIM-2, VIM-1, NDM-1, OXA-23, OXA-10, and OXA-48. The solution results reveal, in all cases, formation of imine products in which the THF ring is opened; formation of a THF ring-closed imine product was only observed with VIM-1 and VIM-2. An enamine product with a closed THF ring was also observed in all cases, at varying levels. Combined with previous reports, the results exemplify the potential for different outcomes in the reactions of penems with MBLs and SBLs and imply further structure-activity relationship studies are worthwhile to optimise the interactions of penems with β-lactamases. They also exemplify how crystal structures of β-lactamase substrate/inhibitor complexes do not always reflect reaction outcomes in solution.
|
Feb 2021
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[19844]
Open Access
Abstract: Cells and organisms have a wide range of mechanisms to defend against infection by viruses and other mobile genetic elements (MGE). Type III CRISPR systems detect foreign RNA and typically generate cyclic oligoadenylate (cOA) second messengers that bind to ancillary proteins with CARF (CRISPR associated Rossman fold) domains. This results in the activation of fused effector domains for antiviral defence. The best characterised CARF family effectors are the Csm6/Csx1 ribonucleases and DNA nickase Can1. Here we investigate a widely distributed CARF family effector with a nuclease domain, which we name Can2 (CRISPR ancillary nuclease 2). Can2 is activated by cyclic tetra-adenylate (cA4) and displays both DNase and RNase activity, providing effective immunity against plasmid transformation and bacteriophage infection in Escherichia coli. The structure of Can2 in complex with cA4 suggests a mechanism for the cA4-mediated activation of the enzyme, whereby an active site cleft is exposed on binding the activator. These findings extend our understanding of type III CRISPR cOA signalling and effector function.
|
Feb 2021
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[19800]
Abstract: Cooperative ligand binding is an important phenomenon in biological systems where ligand binding influences the binding of another ligand at an alternative site of the protein via an intramolecular network of interactions. The underlying mechanisms behind cooperative binding remain poorly understood, primarily due to the lack of structural data of these ternary complexes. Using time-resolved fluorescence resonance energy transfer (TR-FRET) studies, we show that cooperative ligand binding occurs for RORγt, a nuclear receptor associated with the pathogenesis of autoimmune diseases. To provide the crucial structural insights, we solved 12 crystal structures of RORγt simultaneously bound to various orthosteric and allosteric ligands. The presence of the orthosteric ligand induces a clamping motion of the allosteric pocket via helices 4 to 5. Additional molecular dynamics simulations revealed the unusual mechanism behind this clamping motion, with Ala355 shifting between helix 4 and 5. The orthosteric RORγt agonists regulate the conformation of Ala355, thereby stabilizing the conformation of the allosteric pocket and cooperatively enhancing the affinity of the allosteric inverse agonists.
|
Feb 2021
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Shanshan
Zhou
,
Hussain
Bhukya
,
Nicolas
Malet
,
Peter J.
Harrison
,
Dean
Rea
,
Matthew J.
Belousoff
,
Hariprasad
Venugopal
,
Paulina K.
Sydor
,
Kathryn M.
Styles
,
Lijiang
Song
,
Max J.
Cryle
,
Lona M.
Alkhalaf
,
Vilmos
Fulop
,
Gregory L.
Challis
,
Christophe
Corre
Diamond Proposal Number(s):
[8359, 8388]
Abstract: Actinobacteria produce numerous antibiotics and other specialized metabolites that have important applications in medicine and agriculture1. Diffusible hormones frequently control the production of such metabolites by binding TetR family transcriptional repressors (TFTRs), but the molecular basis for this remains unclear2. The production of methylenomycin antibiotics in Streptomyces coelicolor A3(2) is initiated by the binding of 2-alkyl-4-hydroxymethylfuran-3-carboxylic acid (AHFCA) hormones to the TFTR MmfR3. Here we report the X-ray crystal structure of an MmfR–AHFCA complex, establishing the structural basis for hormone recognition. We also elucidate the mechanism for DNA release upon hormone binding through the single-particle cryo-electron microscopy structure of an MmfR–operator complex. DNA binding and release assays with MmfR mutants and synthetic AHFCA analogues define the role of individual amino acid residues and hormone functional groups in ligand recognition and DNA release. These findings will facilitate the exploitation of actinobacterial hormones and their associated TFTRs in synthetic biology and in the discovery of new antibiotics.
|
Feb 2021
|
|