I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[29784]
Open Access
Abstract: Biological tissues are exposed to X-rays in medical applications (such as diagnosis and radiotherapy) and in research studies (for example microcomputed X-ray tomography: microCT). Radiotherapy may deliver doses up to 50Gy to both tumour and healthy tissues, resulting in undesirable clinical side effects which can compromise quality of life. Whilst cellular responses to X-rays are relatively well-characterised, X-ray-induced structural damage to the extracellular matrix (ECM) is poorly understood. This study tests the hypotheses that ECM proteins and ECM-rich tissues (purified collagen I and rat tail tendons respectively) are structurally compromised by exposure to X-ray doses used in breast radiotherapy. Protein gel electrophoresis demonstrated that breast radiotherapy equivalent doses can induce fragmentation of the constituent α chains in solubilised purified collagen I. However, assembly into fibrils, either in vitro or in vivo, prevented X-ray-induced fragmentation but not structural changes (as characterised by LC-MS/MS and peptide location fingerprinting: PLF). In subsequent experiments exposure to higher (synchrotron) X-ray doses induced substantial fragmentation of solubilised and fibrillar (chicken tendon) collagen I. LC-MS/MS and PLF analysis of synchrotron-irradiated tendon identified structure-associated changes in collagens I, VI, XII, proteoglycans including aggrecan, decorin, and fibromodulin, and the elastic fibre component fibulin-1. Thus, exposure to radiotherapy X-rays can affect the structure of key tissue ECM components, although additional studies will be required to understand dose dependent effects.
|
Mar 2025
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[34473]
Open Access
Abstract: Molluscan brains are composed of morphologically consistent and functionally interrogable neurons, offering rich opportunities for understanding how neural circuits drive behavior. Nonetheless, detailed component-level CNS maps are often lacking, total neuron numbers are unknown, and organizational principles remain poorly defined, limiting a full and systematic characterization of circuit operation. Here, we establish an accessible, generalizable approach, harnessing synchrotron X-ray tomography, to rapidly determine the three-dimensional structure of the multimillimeter-scale CNS of Lymnaea. Focusing on the feeding ganglia, we generate a full neuron-level reconstruction, revealing key design principles and revising cell count estimates upward threefold. Our atlas uncovers the superficial but also nonsuperficial ganglionic architecture, reveals the cell organization in normally hidden regions—ganglionic “dark sides”—and details features of single-neuron morphology, together guiding targeted follow-up functional investigation based on intracellular recordings. Using this approach, we identify three pivotal neuron classes: a command-like food-signaling cell type, a feeding central pattern generator interneuron, and a unique behavior-specific motoneuron, together significantly advancing understanding of the function of this classical control circuit. Combining our morphological and electrophysiological data, we also establish a functional CNS atlas in Lymnaea as a shared and scalable resource for the research community. Our approach enables the rapid construction of cell atlases in large-scale nervous systems, with key relevance to functional circuit interrogation in a diverse range of model organisms.
|
Mar 2025
|
|
I13-2-Diamond Manchester Imaging
|
Huw C. W.
Parks
,
Matthew
Jones
,
Aaron
Wade
,
Alice
Llewellyn
,
Chun
Tan
,
Hamish
Reid
,
Ralf
Ziesche
,
Thomas M. M.
Heenan
,
Shashidhara
Marathe
,
Christoph
Rau
,
Paul R.
Shearing
,
Rhodri
Jervis
Diamond Proposal Number(s):
[28650]
Open Access
Abstract: To understand fracture behaviour in battery materials, X-ray computed tomography (X-ray CT) has become the primary technique for non-destructive particle and crack analysis. Cracking causes performance decline in polycrystalline NMC811 by exposing new surfaces for parasitic electrolyte reactions and disconnecting active material from the electrode matrix. First cycle crack formation has been documented, but definitive electrochemically induced particle fracture is challenging to assess due to complex sample preparation and high-resolution X-ray imaging requirements. Presented here is an operando X-ray CT technique that enables accurate observation of fracture behaviour during de-/lithiation. A non-linear relationship between fracture behaviour and cell voltage was uncovered, and evidence of particle reformation during re-lithiation. Using a grey level analysis algorithm for fracture detection, we expedite damage evaluation in several thousands of particles throughout the electrochemical process, understanding crack initiation, propagation, and closure on a large, statistical scale and give the ability to track any one of the thousands of particles through its individual electrochemical history. Additionally, we explore the effects of continued volumetric hysteresis on particle damage. For the first time, we demonstrate the complex plurality of fracture behaviour in commercial lithium-ion battery materials, aiding in designing mitigation strategies against particle fracture.
|
Mar 2025
|
|
DIAD-Dual Imaging and Diffraction Beamline
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[32980]
Open Access
Abstract: Machine learning techniques are being increasingly applied in medical and physical sciences across a variety of imaging modalities; however, an important issue when developing these tools is the availability of good quality training data. Here we present a unique, multimodal synchrotron dataset of a bespoke zinc-doped Zeolite 13X sample that can be used to develop advanced deep learning and data fusion pipelines. Multi-resolution micro X-ray computed tomography was performed on a zinc-doped Zeolite 13X fragment to characterise its pores and features before spatially resolved X-ray diffraction computed tomography was carried out to characterise the topographical distribution of sodium and zinc phases. Zinc absorption was controlled to create a simple, spatially isolated, two-phase material. Both raw and processed data are available as a series of Zenodo entries. Altogether we present a spatially resolved, three-dimensional, multimodal, multi-resolution dataset that can be used to develop machine learning techniques. Such techniques include the development of super-resolution, multimodal data fusion, and 3D reconstruction algorithms.
|
Feb 2025
|
|
I13-2-Diamond Manchester Imaging
|
Begum
Okutan
,
Uwe Y.
Schwarze
,
Hansjörg
Habisch
,
Kamila
Iskhakova
,
Hanna
Cwieka
,
Cláudia
Ribeiro-Machado
,
Julian
Moosmann
,
Clement
Blanchet
,
Iva
Brcic
,
Susana G.
Santos
,
Tobias
Madl
,
Berit
Zeller-Plumhoff
,
Annelie M.
Weinberg
,
D. C. Florian
Wieland
,
Nicole G.
Sommer
Diamond Proposal Number(s):
[25485]
Open Access
Abstract: Magnesium (Mg)-based implants have become an attractive alternative to conventional permanent implants in the orthopedic field. While biocompatibility, degradation kinetics, and osseointegration of Mg-based implants have been mostly investigated, the impact of degradation products on bone remodeling and potential systemic effects remains unclear. The aim of this study was to evaluate the early and mid-term local and systemic tissue responses of degrading ultrahigh-purity ZX00 (Mg–Zn–Ca alloy) and ultrahigh-purity Mg (XHP-Mg) pins in a juvenile healthy rat model. The potential differences between implant types (degradable vs. permanent), implantation, and age-related changes were investigated using titanium (Ti), sham-operated, and control groups (non-intervention), respectively. Degradation products of ZX00 and XHP-Mg pins promote osteogenesis in the medullary cavity by upregulating the expression levels of Bmp2 and Opg within 14 days post-surgery. The higher degradation rate of XHP-Mg resulted in the accumulation of degradation products starting from day 3 and upregulation of different genes, particularly Ccl2 and Cepbp. Besides good osseointegration and new bone tissue formation, we found a more parallel hydroxyapatite/collagen orientation along Mg-based pins in the perimeter region compared to Ti pins. In the liver, reduced glycogen levels in Mg-based pins indicated that degradation products promote glycogenolysis, while only the ZX00 group showed a higher serum glucagon level on day 14. Results suggest that degrading ZX00 and XHP-Mg pins stimulate osteogenesis mainly via Bmp2 and Opg and promote glycogenolysis in the liver, while the higher degradation rate of XHP-Mg pins resulted in upregulation of different genes and metabolites.
|
Feb 2025
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[19354]
Open Access
Abstract: Laser powder bed fusion (LPBF) of Polyamide 12 (PA12) using a near-infra-red (NIR) beam is largely unexplored; therefore, the beam-matter interaction, evolution mechanisms of the melt pool and defects remain unclear. Here, we employed a combination of in situ synchrotron X-ray imaging, ex situ materials characterisation techniques, and high-fidelity process simulations to study these behaviours during LPBF of PA12. Our results demonstrate that the NIR absorption of PA12 can be improved by 600 times through powder surface modification with C, P and Al species. In situ X-ray images reveal that the PA12 powders undergo melting, viscous merging, volume expansion, warping, solidification, and shrinkage before forming a solid track. Our results uncover the bubble evolution mechanisms during LPBF of PA12. During laser scanning, the high-energy laser beam produces organic substances/vapours which are trapped inside bubbles during viscous merging. These bubbles continue to shrink due to vapour condensation as the polymer cools under a cooling rate range of 200 - 600 K s−1. Using the collected data, we have developed a data-driven bubble shrinkage criterion to predict the bubble shrinkage coefficient using the bubble half-life, improving the build quality of LPBF polymeric parts.
|
Feb 2025
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[17971]
Open Access
Abstract: We propose an imaging system and methodology for mapping soft-tissue samples in three dimensions, with micron-scale and isotropic spatial resolution, with low-concentrations as well as in the absence of heavy metal staining. We used hard x-ray phase-contrast imaging for the x-ray ability to nondestructively probe the internal structure of opaque specimens and for enhanced contrast obtained by exploiting phase effects, even in cases with reduced or absent staining agents. To demonstrate its applicability to soft-tissue specimens, we built a compact system that is easily deployable in a laboratory setting. The imaging system is based on a conventional rotating anode x-ray tube and a state-of-the-art custom-made radiation detector. The systems performance is quantitatively assessed on a calibration standard. Its potential for soft-tissue microscopy is demonstrated on two biological specimens and benchmarked against gold-standard synchrotron data. We believe that the approach proposed here can be valuable as a bridging imaging modality for intravital correlative light and electron microscopy and be applied across disciplines where the three-dimensional morphology of pristine-condition soft tissues is a key element of the investigation.
|
Jan 2025
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[19913, 20902]
Open Access
Abstract: The impact of drug saturation and processing regime on the microstructure of amorphous solid dispersions (ASDs) produced by hot-melt extrusion (HME) has been investigated. By exploring various combinations of drug loadings and processing temperatures, a range of drug saturation points were obtained by HME. The process was monitored with an in-line low-frequency Raman probe to construct the respective solubility phase diagram (i.e., solubility of crystalline drug in molten/soften polymer). The resulting ASDs were analysed with synchrotron X-ray phase-contrast micro computed tomography (Sync-XPC-μCT) in conjunction with a tailored image segmentation strategy to extract quantitative and qualitative descriptors. Despite minimal elemental variability between the drug (paracetamol) and the polymer (HPMC), Sync-XPC-μCT provided sufficient contrast to identify multiple structural domains, including drug-rich crystalline clusters, impurities, polymer-related heterogeneities and voids/pores. Supersaturated ASDs (> 20 wt% drug loading) displayed higher structural complexity and showed a plethora of highly defective API-rich crystalline domains upon ageing, which were absent in the undersaturated ASDs. Beyond its impact on the API physical state, the HME processing regime influenced the degree of homogeneity within the polymer fraction, as well as total porosity, size, shape and pore connectivity. By correlating with fundamental API-polymer solubility data, this study offers additional insight into the dynamics of the drug’s solubilisation process during extrusion and the subsequent formation of microstructures within the ASD system, which have potential implications on product performance and stability.
|
Dec 2024
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[13848, 16052, 17632, 20385]
Open Access
Abstract: Understanding how ecological communities assemble in relation to natural and human-induced environmental changes is critical, particularly for communities of pollinators that deliver essential ecosystem services. Despite widespread attention to interactions between functional traits and community responses to environmental changes, the importance of sensory traits has received little attention. To address this, we asked whether visual traits of bumblebee communities varied at large geographical scales along a habitat gradient of increased tree cover. Because trees generate challenging light conditions for flying insects, in particular a reduced light intensity, we hypothesised that differences in tree cover would correlate with shifts in the visual and taxonomical composition of bumblebee communities. We quantified 11 visual traits across 36 specimens from 20 species of bumblebees using micro-CT and optical modelling of compound eyes and ocelli, and investigated how these traits scale with body size. Using an inventory of bumblebee communities across Sweden and our visual trait dataset, we then explored how visual traits (both absolute and relative to body size) differed in relation to tree cover. We found positive shifts of the community weighted means of visual traits along the increasingly forested habitat gradient (facet diameter, inter-ommatidial angle, eye parameter of the compound eye and alignment of the three ocelli) that were consistent regardless of body size, while other traits decreased when more forest was present in the landscape (facet number). These functional patterns were associated with differences in the abundance of six common species that likely explains the community-wide shift of visual traits along the habitat gradient. Our study demonstrates the interaction between vision, habitat and community assembly in bumblebees, while highlighting a promising research topic at the interface between sensory biology and landscape ecology.
|
Dec 2024
|
|
I13-2-Diamond Manchester Imaging
I14-Hard X-ray Nanoprobe
|
Kamila
Iskhakova
,
Hanna
Cwieka
,
Svenja
Meers
,
Heike
Helmholz
,
Anton
Davydok
,
Malte
Storm
,
Ivo Matteo
Baltruschat
,
Silvia
Galli
,
Daniel
Pröfrock
,
Olga
Will
,
Mirko
Gerle
,
Timo
Damm
,
Sandra
Sefa
,
Weilue
He
,
Keith
Macrenaris
,
Malte
Soujon
,
Felix
Beckmann
,
Julian
Moosmann
,
Thomas
O'Hallaran
,
Roger J.
Guillory
,
D. C. Florian
Wieland
,
Berit
Zeller-Plumhoff
,
Regine
Willumeit-Römer
Diamond Proposal Number(s):
[25078]
Open Access
Abstract: Magnesium (Mg) – based alloys are becoming attractive materials for medical applications as temporary bone implants for support of fracture healing, e.g. as a suture anchor. Due to their mechanical properties and biocompatibility, they may replace titanium or stainless-steel implants, commonly used in orthopedic field. Nevertheless, patient safety has to be assured by finding a long-term balance between metal degradation, osseointegration, bone ultrastructure adaptation and element distribution in organs. In order to determine the implant behavior and its influence on bone and tissues, we investigated two Mg alloys with gadolinium contents of 5 and 10 wt percent in comparison to permanent materials titanium and polyether ether ketone. The implants were present in rat tibia for 10, 20 and 32 weeks before sacrifice of the animal. Synchrotron radiation-based micro computed tomography enables the distinction of features like residual metal, degradation layer and bone structure. Additionally, X-ray diffraction and X-ray fluorescence yield information on parameters describing the bone ultrastructure and elemental composition at the bone-to-implant interface. Finally, with element specific mass spectrometry, the elements and their accumulation in the main organs and tissues are traced. The results show that Mg-xGd implants degrade in vivo under the formation of a stable degradation layer with bone remodeling similar to that of Ti after 10 weeks. No accumulation of Mg and Gd was observed in selected organs, except for the interfacial bone after 8 months of healing. Thus, we confirm that Mg-5Gd and Mg-10Gd are suitable material choices for bone implants.
|
Nov 2024
|
|