I23-Long wavelength MX
|
Diamond Proposal Number(s):
[32794]
Open Access
Abstract: Voltage-dependent anion channel 1 (VDAC1) is a key protein in cellular metabolism and apoptosis. Here, we present a protocol to express and purify milligram amounts of recombinant VDAC1 in Escherichia coli. We detail steps for a fluorescence polarization-based high-throughput screening assay using NADH displacement, along with procedures for thermostability, fluorescence polarization, and X-ray crystallography. In this context, we demonstrate how 2-methyl-2,4-pentanediol (MPD), a crystallization reagent, interferes with VDAC1 small-molecule binding, hindering the detection of these ligands in the crystal.
|
Mar 2025
|
|
I03-Macromolecular Crystallography
I23-Long wavelength MX
I24-Microfocus Macromolecular Crystallography
Krios II-Titan Krios II at Diamond
|
Audrey
Le Bas
,
Bradley R.
Clarke
,
Tanisha
Teelucksingh
,
Micah
Lee
,
Kamel
El Omari
,
Andrew M.
Giltrap
,
Stephen A.
Mcmahon
,
Hui
Liu
,
John H.
Beale
,
Vitaliy
Mykhaylyk
,
Ramona
Duman
,
Neil G.
Paterson
,
Philip N.
Ward
,
Peter J.
Harrison
,
Miriam
Weckener
,
Els
Pardon
,
Jan
Steyaert
,
Huanting
Liu
,
Andrew
Quigley
,
Benjamin G.
Davis
,
Armin
Wagner
,
Chris
Whitfield
,
James H.
Naismith
Diamond Proposal Number(s):
[33941]
Open Access
Abstract: The enterobacterial common antigen (ECA) is conserved in Gram-negative bacteria of the Enterobacterales order although its function is debated. ECA biogenesis depends on the Wzx/Wzy-dependent strategy whereby the newly synthesized lipid-linked repeat units, lipid III, are transferred across the inner membrane by the lipid III flippase WzxE. WzxE is part of the Wzx family and required in many glycan assembly systems, but an understanding of its molecular mechanism is hindered due to a lack of structural evidence. Here, we present the first X-ray structures of WzxE from Escherichia coli in complex with nanobodies. Both inward- and outward-facing conformations highlight two pairs of arginine residues that move in a reciprocal fashion, enabling flipping. One of the arginine pairs coordinated to a glutamate residue is essential for activity along with the C-terminal arginine rich tail located close to the entrance of the lumen. This work helps understand the translocation mechanism of the Wzx flippase family.
|
Jan 2025
|
|
I23-Long wavelength MX
|
Open Access
Abstract: Analytical absorption corrections are employed in scaling diffraction data for highly absorbing samples, such as those used in long-wavelength crystallography, where empirical corrections pose a challenge. AnACor2.0 is an accelerated software package developed to calculate analytical absorption corrections. It accomplishes this by ray-tracing the paths of diffracted X-rays through a voxelized 3D model of the sample. Due to the computationally intensive nature of ray-tracing, the calculation of analytical absorption corrections for a given sample can be time consuming. Three experimental datasets (insulin at λ = 3.10 Å, thermolysin at λ = 3.53 Å and thaumatin at λ = 4.13 Å) were processed to investigate the effectiveness of the accelerated methods in AnACor2.0. These methods demonstrated a maximum reduction in execution time of up to 175× compared with previous methods. As a result, the absorption factor calculation for the insulin dataset can now be completed in less than 10 s. These acceleration methods combine sampling, which evaluates subsets of crystal voxels, with modifications to standard ray-tracing. The bisection method is used to find path lengths, reducing the complexity from O(n) to O(log2 n). The gridding method involves calculating a regular grid of diffraction paths and using interpolation to find an absorption correction for a specific reflection. Additionally, optimized and specifically designed CUDA implementations for NVIDIA GPUs are utilized to enhance performance. Evaluation of these methods using simulated and real datasets demonstrates that systematic sampling of the 3D model provides consistently accurate results with minimal variance across different sampling ratios. The mean difference of absorption factors from the full calculation (without sampling) is at most 2%. Additionally, the anomalous peak heights of sulfur atoms in the Fourier map show a mean difference of only 1% compared with the full calculation. This research refines and accelerates the process of analytical absorption corrections, introducing innovative sampling and computational techniques that significantly enhance efficiency while maintaining accurate results.
|
Dec 2024
|
|
I23-Long wavelength MX
|
Diamond Proposal Number(s):
[29990]
Open Access
Abstract: One of the challenges for experimental structural biology in the 21st century is to see chemical reactions happen. Staphylococcus aureus (S. aureus) DNA gyrase is a type IIA topoisomerase that can create temporary double-stranded DNA breaks to regulate DNA topology. Drugs, such as gepotidacin, zoliflodacin and the quinolone moxifloxacin, can stabilize these normally transient DNA strand breaks and kill bacteria. Crystal structures of uncleaved DNA with a gepotidacin precursor (2.1 Å GSK2999423) or with doubly cleaved DNA and zoliflodacin (or with its progenitor QPT-1) have been solved in the same P61 space-group (a = b ≈ 93 Å, c ≈ 412 Å). This suggests that it may be possible to observe the two DNA cleavage steps (and two DNA-religation steps) in this P61 space-group. Here, a 2.58 Å anomalous manganese dataset in this crystal form is solved, and four previous crystal structures (1.98 Å, 2.1 Å, 2.5 Å and 2.65 Å) in this crystal form are re-refined to clarify crystal contacts. The structures clearly suggest a single moving metal mechanism—presented in an accompanying (second) paper. A previously published 2.98 Å structure of a yeast topoisomerase II, which has static disorder around a crystallographic twofold axis, was published as containing two metals at one active site. Re-refined coordinates of this 2.98 Å yeast structure are consistent with other type IIA topoisomerase structures in only having one metal ion at each of the two different active sites.
|
Nov 2024
|
|
I23-Long wavelength MX
|
Open Access
Abstract: AlphaFold2 has revolutionized structural biology by offering unparalleled accuracy in predicting protein structures. Traditional methods for determining protein structures, such as X-ray crystallography and cryo-electron microscopy, are often time-consuming and resource-intensive. AlphaFold2 provides models that are valuable for molecular replacement, aiding in model building and docking into electron density or potential maps. However, despite its capabilities, models from AlphaFold2 do not consistently match the accuracy of experimentally determined structures, need to be validated experimentally and currently miss some crucial information, such as post-translational modifications, ligands and bound ions. In this paper, the advantages are explored of collecting X-ray anomalous data to identify chemical elements, such as metal ions, which are key to understanding certain structures and functions of proteins. This is achieved through methods such as calculating anomalous difference Fourier maps or refining the imaginary component of the anomalous scattering factor f′′. Anomalous data can serve as a valuable complement to the information provided by AlphaFold2 models and this is particularly significant in elucidating the roles of metal ions.
|
Oct 2024
|
|
I23-Long wavelength MX
|
Diamond Proposal Number(s):
[31800]
Open Access
Abstract: Metal ions have important roles in supporting the catalytic activity of DNA-regulating enzymes such as topoisomerases (topos). Bacterial type II topos, gyrases and topo IV, are primary drug targets for fluoroquinolones, a class of clinically relevant antibacterials requiring metal ions for efficient drug binding. While the presence of metal ions in topos has been elucidated in biochemical studies, accurate location and assignment of metal ions in structural studies have historically posed significant challenges. Recent advances in X-ray crystallography address these limitations by extending the experimental capabilities into the long-wavelength range, exploiting the anomalous contrast from light elements of biological relevance. This breakthrough enables us to confirm experimentally the locations of Mg2+ in the fluoroquinolone-stabilized Streptococcus pneumoniae topo IV complex. Moreover, we can unambiguously identify the presence of K+ and Cl- ions in the complex with one pair of K+ ions functioning as an additional intersubunit bridge. Overall, our data extend current knowledge on the functional and structural roles of metal ions in type II topos.
|
Oct 2024
|
|
I04-Macromolecular Crystallography
I23-Long wavelength MX
I24-Microfocus Macromolecular Crystallography
|
David
Hollingworth
,
Frances
Thomas
,
Dana A.
Page
,
Mohamed A.
Fouda
,
Raquel Lopez-Rios
De Castro
,
Altin
Sula
,
Vitaliy B.
Mykhaylyk
,
Geoff
Kelly
,
Martin B.
Ulmschneider
,
Peter C.
Ruben
,
Bonnie A.
Wallace
Diamond Proposal Number(s):
[23853]
Open Access
Abstract: Neuronal hyperexcitability is a key element of many neurodegenerative disorders including the motor neuron disease Amyotrophic Lateral Sclerosis (ALS), where it occurs associated with elevated late sodium current (INaL). INaL results from incomplete inactivation of voltage-gated sodium channels (VGSCs) after their opening and shapes physiological membrane excitability. However, dysfunctional increases can cause hyperexcitability-associated diseases. Here we reveal the atypical binding mechanism which explains how the neuroprotective ALS-treatment drug riluzole stabilises VGSCs in their inactivated state to cause the suppression of INaL that leads to reversed cellular overexcitability. Riluzole accumulates in the membrane and enters VGSCs through openings to their membrane-accessible fenestrations. Riluzole binds within these fenestrations to stabilise the inactivated channel state, allowing for the selective allosteric inhibition of INaL without the physical block of Na+ conduction associated with traditional channel pore binding VGSC drugs. We further demonstrate that riluzole can reproduce these effects on a disease variant of the non-neuronal VGSC isoform Nav1.4, where pathologically increased INaL is caused directly by mutation. Overall, we identify a model for VGSC inhibition that produces effects consistent with the inhibitory action of riluzole observed in models of ALS. Our findings will aid future drug design and supports research directed towards riluzole repurposing.
|
Sep 2024
|
|
I03-Macromolecular Crystallography
I23-Long wavelength MX
|
Dilek
Guneri
,
Effrosyni
Alexandrou
,
Kamel
El Omari
,
Zuzana
Dvořáková
,
Rupesh V.
Chikhale
,
Daniel T. S.
Pike
,
Christopher A.
Waudby
,
Christopher J.
Morris
,
Shozeb
Haider
,
Gary N.
Parkinson
,
Zoë A. E.
Waller
Open Access
Abstract: The insulin-linked polymorphic region is a variable number of tandem repeats region of DNA in the promoter of the insulin gene that regulates transcription of insulin. This region is known to form the alternative DNA structures, i-motifs and G-quadruplexes. Individuals have different sequence variants of tandem repeats and although previous work investigated the effects of some variants on G-quadruplex formation, there is not a clear picture of the relationship between the sequence diversity, the DNA structures formed, and the functional effects on insulin gene expression. Here we show that different sequence variants of the insulin linked polymorphic region form different DNA structures in vitro. Additionally, reporter genes in cellulo indicate that insulin expression may change depending on which DNA structures form. We report the crystal structure and dynamics of an intramolecular i-motif, which reveal sequences within the loop regions forming additional stabilising interactions that are critical to formation of stable i-motif structures. The outcomes of this work reveal the detail in formation of stable i-motif DNA structures, with potential for rational based drug design for compounds to target i-motif DNA.
|
Aug 2024
|
|
I23-Long wavelength MX
|
Yishun
Lu
,
Ramona
Duman
,
James
Beilsten-Edmands
,
Graeme
Winter
,
Mark
Basham
,
Gwyndaf
Evans
,
Jos J. A. G.
Kamps
,
Allen M.
Orville
,
Hok-Sau
Kwong
,
Konstantinos
Beis
,
Wesley
Armour
,
Armin
Wagner
Open Access
Abstract: rocessing of single-crystal X-ray diffraction data from area detectors can be separated into two steps. First, raw intensities are obtained by integration of the diffraction images, and then data correction and reduction are performed to determine structure-factor amplitudes and their uncertainties. The second step considers the diffraction geometry, sample illumination, decay, absorption and other effects. While absorption is only a minor effect in standard macromolecular crystallography (MX), it can become the largest source of uncertainty for experiments performed at long wavelengths. Current software packages for MX typically employ empirical models to correct for the effects of absorption, with the corrections determined through the procedure of minimizing the differences in intensities between symmetry-equivalent reflections; these models are well suited to capturing smoothly varying experimental effects. However, for very long wavelengths, empirical methods become an unreliable approach to model strong absorption effects with high fidelity. This problem is particularly acute when data multiplicity is low. This paper presents an analytical absorption correction strategy (implemented in new software AnACor) based on a volumetric model of the sample derived from X-ray tomography. Individual path lengths through the different sample materials for all reflections are determined by a ray-tracing method. Several approaches for absorption corrections (spherical harmonics correction, analytical absorption correction and a combination of the two) are compared for two samples, the membrane protein OmpK36 GD, measured at a wavelength of λ = 3.54 Å, and chlorite dismutase, measured at λ = 4.13 Å. Data set statistics, the peak heights in the anomalous difference Fourier maps and the success of experimental phasing are used to compare the results from the different absorption correction approaches. The strategies using the new analytical absorption correction are shown to be superior to the standard spherical harmonics corrections. While the improvements are modest in the 3.54 Å data, the analytical absorption correction outperforms spherical harmonics in the longer-wavelength data (λ = 4.13 Å), which is also reflected in the reduced amount of data being required for successful experimental phasing.
|
Jun 2024
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
I23-Long wavelength MX
I24-Microfocus Macromolecular Crystallography
VMXi-Versatile Macromolecular Crystallography in situ
|
Abstract: Bacteria form sessile antimicrobial-tolerant communities called biofilms, threatening health, infrastructure, and the environment. Pseudomonas aeruginosa is a biofilm-forming opportunistic pathogen, responsible for causing many chronic infections, particularly in the lungs of Cystic Fibrosis patients. Environmental stimuli regulate biofilm dispersal to benefit the survival of the bacterial cells. Redox changes regulate biofilm dispersal, and nitric oxide has a role in this process. Several proteins respond to redox changes to disperse the biofilm, and these often contain the sensory PAS domains. The complete pathway of this redox-stimulated biofilm dispersal is currently not fully comprehended.
Within this thesis the concept of bacterial biofilms and the involvement of redox in their lifecycle is explored. With a focus on PAS domains, several proteins which are redox-responding and regulate biofilm lifecycle are studied, namely BdlA, PipA, PA2072, and RbdA. Firstly, analysis was completed to further a bioinformatical study to predict the functions of lesser researched proteins in P. aeruginosa. Comparing the PAS domains phylogenetically and sequentially to a reference set of structurally characterised PAS domains generated testable hypotheses and highlighted PAS domains for which the ligand/cofactor has not been yet discovered in the P. aeruginosa genome; some of which were followed up with structure prediction analysis. BdlA, a biofilm dispersal protein with two PAS domains, was identified to have a disulphide bond which could be responsible for the reaction to redox changes. This disulphide was mutated, and the structure solved, indicating movement of residues surrounding this bond. PipA, a phage-inducing phosphodiesterase which can disperse the biofilm, has two PAS domains, the structures of which were each individually solved. The PAS1 domain is shown not to have a cofactor/ligand bound but to have a large cavity of interest. The PAS2 domain non-covalently binds an FAD cofactor, shown via UV-visible spectroscopy to be able to chemically reduce in solution and photoreduce as a cause of X-rays in crystallo, but the structure of the flavin did not vastly differ between the oxidised and reduced states seen at synchrotrons or XFEL sources. However, there was some evidence of minor change occurring in X-ray pump-probe analysis which. Finally, PA2072 and RbdA are compared and contrasted for their similar domain composition and opposite functionalities, including comparison of PAS and periplasmic domains with structural prediction highlighting key differences and a potential mechanism is unveiled. The structure of the EAL domain of the RbdA protein in a catalytically primed dimer form is shown. Overall, this thesis contributes to further understanding of PAS domains, and adds further insight into how redox induced bacterial biofilm dispersal is conducted.
|
Jun 2024
|
|