I23-Long wavelength MX
|
Open Access
Abstract: Despite being fundamental to multiple biological processes, phosphorus (P) availability in marine environments is often growth-limiting, with generally low surface concentrations. Picocyanobacteria strains encode a putative ABC-type phosphite/phosphate/phosphonate transporter, phnDCE, thought to provide access to an alternative phosphorus pool. This, however, is paradoxical given most picocyanobacterial strains lack known phosphite degradation or carbon-phosphate lyase pathway to utilise alternate phosphorus pools. To understand the function of the PhnDCE transport system and its ecological consequences, we characterised the PhnD1 binding proteins from four distinct marine Synechococcus isolates (CC9311, CC9605, MITS9220, and WH8102). We show the Synechococcus PhnD1 proteins selectively bind phosphorus compounds with a stronger affinity for phosphite than for phosphate or methyl phosphonate. However, based on our comprehensive ligand screening and growth experiments showing Synechococcus strains WH8102 and MITS9220 cannot utilise phosphite or methylphosphonate as a sole phosphorus source, we hypothesise that the picocyanobacterial PhnDCE transporter is a constitutively expressed, medium-affinity phosphate transporter, and the measured affinity of PhnD1 to phosphite or methyl phosphonate is fortuitous. Our MITS9220_PhnD1 structure explains the comparatively lower affinity of picocyanobacterial PhnD1 for phosphate, resulting from a more limited H-bond network. We propose two possible physiological roles for PhnD1. First, it could function in phospholipid recycling, working together with the predicted phospholipase, TesA, and alkaline phosphatase. Second, by having multiple transporters for P (PhnDCE and Pst), picocyanobacteria could balance the need for rapid transport during transient episodes of higher P availability in the environment, with the need for efficient P utilisation in typical phosphate-deplete conditions.
|
Apr 2023
|
|
B21-High Throughput SAXS
I03-Macromolecular Crystallography
I23-Long wavelength MX
|
Eugene
Kuatsjah
,
Michael
Zahn
,
Xiangyang
Chen
,
Ryo
Kato
,
Daniel J.
Hinchen
,
Mikhail O.
Konev
,
Rui
Katahira
,
Christian
Orr
,
Armin
Wagner
,
Yike
Zou
,
Stefan J.
Haugen
,
Kelsey J.
Ramirez
,
Joshua K.
Michener
,
Andrew R.
Pickford
,
Naofumi
Kamimura
,
Eiji
Masai
,
Kendall N.
Houk
,
John
Mcgeehan
,
Gregg T.
Beckham
Diamond Proposal Number(s):
[23269]
Open Access
Abstract: Lignin valorization is being intensely pursued via tandem catalytic depolymerization and biological funneling to produce single products. In many lignin depolymerization processes, aromatic dimers and oligomers linked by carbon–carbon bonds remain intact, necessitating the development of enzymes capable of cleaving these compounds to monomers. Recently, the catabolism of erythro-1,2-diguaiacylpropane-1,3-diol (erythro-DGPD), a ring-opened lignin-derived β-1 dimer, was reported in Novosphingobium aromaticivorans. The first enzyme in this pathway, LdpA (formerly LsdE), is a member of the nuclear transport factor 2 (NTF-2)-like structural superfamily that converts erythro-DGPD to lignostilbene through a heretofore unknown mechanism. In this study, we performed biochemical, structural, and mechanistic characterization of the N. aromaticivorans LdpA and another homolog identified in Sphingobium sp. SYK-6, for which activity was confirmed in vivo. For both enzymes, we first demonstrated that formaldehyde is the C1 reaction product, and we further demonstrated that both enantiomers of erythro-DGPD were transformed simultaneously, suggesting that LdpA, while diastereomerically specific, lacks enantioselectivity. We also show that LdpA is subject to a severe competitive product inhibition by lignostilbene. Three-dimensional structures of LdpA were determined using X-ray crystallography, including substrate-bound complexes, revealing several residues that were shown to be catalytically essential. We used density functional theory to validate a proposed mechanism that proceeds via dehydroxylation and formation of a quinone methide intermediate that serves as an electron sink for the ensuing deformylation. Overall, this study expands the range of chemistry catalyzed by the NTF-2-like protein family to a prevalent lignin dimer through a cofactorless deformylation reaction.
|
Jan 2023
|
|
I23-Long wavelength MX
|
Diamond Proposal Number(s):
[442]
Abstract: Phosphoenolpyruvate carboxykinase (PEPCK) is a well-characterized enzyme involved in primary glucose metabolism, responsible for catalyzing one of the key steps of gluconeogenesis. It is well demonstrated that PEPCK can efficiently catalyze the reversible interconversion of oxaloacetic acid (OAA) to phosphoenolpyruvate (PEP) in vitro, but the enzyme is typically ascribed a metabolic role that requires preferential catalysis in the direction of PEP synthesis in vivo. Here we present structural and functional data that demonstrate the preferential synthesis of PEP from OAA catalyzed by PEPCK in vivo is facilitated by anion-mediated enzyme inhibition that reduces enzyme activity more significantly in the direction of OAA synthesis than in the direction of PEP synthesis. From our studies we conclude that the specific binding of small, ubiquitous anions like chloride, present in millimolar concentrations under normal cellular conditions allows for metabolic control by restricting PEPCK to function in the direction of PEP synthesis.
|
Nov 2022
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
I23-Long wavelength MX
|
Diamond Proposal Number(s):
[17221]
Open Access
Abstract: Orange Carotenoid protein (OCP) is the only known photoreceptor which uses carotenoid for its activation. It is found exclusively in cyanobacteria, where it functions to control light-harvesting of the photosynthetic machinery. However, the photochemical reactions and structural dynamics of this unique photosensing process are not yet resolved. We present time-resolved crystal structures at second-to-minute delays under bright illumination, capturing the early photoproduct and structures of the subsequent reaction intermediates. The first stable photoproduct shows concerted isomerization of C9’-C8’ and C7’-C6’ single bonds in the bicycle-pedal (s-BP) manner and structural changes in the N-terminal domain with minute timescale kinetics. These are followed by a thermally-driven recovery of the s-BP isomer to the dark state carotenoid configuration. Structural changes propagate to the C-terminal domain, resulting, at later time, in the H-bond rupture of the carotenoid keto group with protein residues. Solution FTIR and UV/Vis spectroscopy support the single bond isomerization of the carotenoid in the s-BP manner and subsequent thermal structural reactions as the basis of OCP photoreception.
|
Oct 2022
|
|
I23-Long wavelength MX
|
Tai-Ying
Chu
,
Céline
Zheng-Gérard
,
Kuan-Yeh
Huang
,
Yu-Chi
Chang
,
Ying-Wen
Chen
,
Kuan-Yu
I
,
Yu-Ling
Lo
,
Nien-Yi
Chiang
,
Hsin-Yi
Chen
,
Martin
Stacey
,
Siamon
Gordon
,
Wen-Yi
Tseng
,
Chiao-Yin
Sun
,
Yen-Mu
Wu
,
Yi-Shin
Pan
,
Chien-Hao
Huang
,
Chun-Yen
Lin
,
Tse-Ching
Chen
,
Kamel
El Omari
,
Marilina
Antonelou
,
Scott R.
Henderson
,
Alan
Salama
,
Elena
Seiradake
,
Hsi-Hsien
Lin
Open Access
Abstract: Neutrophils play essential anti-microbial and inflammatory roles in host defense, however, their activities require tight regulation as dysfunction often leads to detrimental inflammatory and autoimmune diseases. Here we show that the adhesion molecule GPR97 allosterically activates CD177-associated membrane proteinase 3 (mPR3), and in conjugation with several protein interaction partners leads to neutrophil activation in humans. Crystallographic and deletion analysis of the GPR97 extracellular region identified two independent mPR3-binding domains. Mechanistically, the efficient binding and activation of mPR3 by GPR97 requires the macromolecular CD177/GPR97/PAR2/CD16b complex and induces the activation of PAR2, a G protein-coupled receptor known for its function in inflammation. Triggering PAR2 by the upstream complex leads to strong inflammatory activation, prompting anti-microbial activities and endothelial dysfunction. The role of the complex in pathologic inflammation is underscored by the finding that both GPR97 and mPR3 are upregulated on the surface of disease-associated neutrophils. In summary, we identify a PAR2 activation mechanism that directs neutrophil activation, and thus inflammation. The PR3/CD177/GPR97/PAR2/CD16b protein complex, therefore, represents a potential therapeutic target for neutrophil-mediated inflammatory diseases.
|
Oct 2022
|
|
I23-Long wavelength MX
|
Diamond Proposal Number(s):
[20281]
Open Access
Abstract: The introduction of phosphorothioate (PS) linkages to the backbone of therapeutic nucleic acids substantially increases their stability and potency. It also affects their interactions with cellular proteins, but the molecular mechanisms that underlie this effect are poorly understood. Here, we report structural and biochemical studies of interactions between annexin A2, a protein that does not possess any known canonical DNA binding domains, and phosphorothioate-modified antisense oligonucleotides. We show that a unique mode of hydrophobic interactions between a sulfur atom of the phosphorothioate group and lysine and arginine residues account for the enhanced affinity of modified nucleic acid for the protein. Our results demonstrate that this mechanism of interaction is observed not only for nucleic acid-binding proteins but can also account for the association of PS oligonucleotides with other proteins. Using the anomalous diffraction of sulfur, we showed that preference for phosphorothioate stereoisomers is determined by the hydrophobic environment around the PS linkage that comes not only from protein but also from additional structural features within the ASO such as 5-Me groups on cytosine nucleobases.
|
Sep 2022
|
|
I04-Macromolecular Crystallography
I23-Long wavelength MX
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[23459]
Open Access
Abstract: Amino acid transporters play a key role controlling the flow of nutrients across the lysosomal membrane and regulating metabolism in the cell. Mutations in the gene encoding the transporter cystinosin result in cystinosis, an autosomal recessive metabolic disorder characterised by the accumulation of cystine crystals in the lysosome. Cystinosin is a member of the PQ-loop family of solute carrier (SLC) transporters and uses the proton gradient to drive cystine export into the cytoplasm. However, the molecular basis for cystinosin function remains elusive, hampering efforts to develop novel treatments for cystinosis and understand the mechanisms of ion driven transport in the PQ-loop family. To address these questions, we present the crystal structures of cystinosin from Arabidopsis thaliana in both apo and cystine bound states. Using a combination of in vitro and in vivo based assays, we establish a mechanism for cystine recognition and proton coupled transport. Mutational mapping and functional characterisation of human cystinosin further provide a framework for understanding the molecular impact of disease-causing mutations.
|
Aug 2022
|
|
I23-Long wavelength MX
|
Open Access
Abstract: The challenge of processing big data effectively and efficiently is crucial for many synchrotron facilities which can collect up to several petabytes of data annually. At Diamond Light Source, the tomographic data is reconstructed with Python-based software Savu which utilises Message Passing Interface protocols to efficiently reconstruct parallel beam geometry data. When projection data is undersampled and/or noisy, regularised iterative reconstruction methods can provide a better reconstruction quality than direct methods. The iterative methods, however, require significantly more computational resources than direct methods and their usability is impeded by the choice of additional hyper-parameters. Notably, the use of 2D regularised iterative methods for reconstruction of 3D objects results in inconsistent (saw-shaped) features in a perpendicular to slicing orientation. Due to large data sizes, fully 3D regularised model-based iterative reconstruction is problematic or impossible in practice due to high memory requirements and long processing times. In this work, we demonstrate a practical solution which enables an approximated full 3D regularised iterative reconstruction running in parallel on a computing cluster. This modification delivers an equivalent to exact 3D reconstruction quality of data volumes with a high computational efficiency.
|
Jul 2022
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
I23-Long wavelength MX
|
Diamond Proposal Number(s):
[18548, 25402]
Abstract: The abundance of recorded protein sequence data stands in contrast to the small number of experimentally verified functional annotation. Here we screened a million-membered metagenomic library at ultrahigh throughput in microfluidic droplets for β-glucuronidase activity. We identified SN243, a genuine β-glucuronidase with little homology to previously studied enzymes of this type, as a glycoside hydrolase 3 family member. This glycoside hydrolase family contains only one recently added β-glucuronidase, showing that a functional metagenomic approach can shed light on assignments that are currently ‘unpredictable’ by bioinformatics. Kinetic analyses of SN243 characterized it as a promiscuous catalyst and structural analysis suggests regions of divergence from homologous glycoside hydrolase 3 members creating a wide-open active site. With a screening throughput of >107 library members per day, picolitre-volume microfluidic droplets enable functional assignments that complement current enzyme database dictionaries and provide bridgeheads for the annotation of unexplored sequence space.
|
Jul 2022
|
|
I03-Macromolecular Crystallography
I23-Long wavelength MX
|
Christian M.
Orr
,
Hayden
Fisher
,
Xiaojie
Yu
,
Claude H.-T.
Chan
,
Yunyun
Gao
,
Patrick J.
Duriez
,
Steven G.
Booth
,
Isabel
Elliott
,
Tatyana
Inzhelevskaya
,
Ian
Mockridge
,
Christine A.
Penfold
,
Armin
Wagner
,
Martin J.
Glennie
,
Ann L.
White
,
Jonathan W.
Essex
,
Arwen R.
Pearson
,
Mark S.
Cragg
,
Ivo
Tews
Diamond Proposal Number(s):
[22563]
Open Access
Abstract: Antibodies protect from infection, underpin successful vaccines and elicit therapeutic responses in otherwise untreatable cancers and autoimmune conditions. The human IgG2 isotype displays a unique capacity to undergo disulfide shuffling in the hinge region, leading to modulation of its ability to drive target receptor signaling (agonism) in a variety of important immune receptors, through hitherto unexplained molecular mechanisms. To address the underlying process and reveal how hinge disulfide orientation affects agonistic activity, we generated a series of cysteine to serine exchange variants in the hinge region of the clinically relevant monoclonal antibody ChiLob7/4, directed against the key immune receptor CD40. We report how agonistic activity varies with disulfide pattern and is afforded by the presence of a disulfide crossover between F(ab) arms in the agonistic forms, independently of epitope, as observed in the determined crystallographic structures. This structural “switch” affects directly on antibody conformation and flexibility. Small-angle x-ray scattering and ensemble modeling demonstrated that the least flexible variants adopt the fewest conformations and evoke the highest levels of receptor agonism. This covalent change may be amenable for broad implementation to modulate receptor signaling in an epitope-independent manner in future therapeutics.
|
Jul 2022
|
|