Krios II-Titan Krios II at Diamond
|
Diamond Proposal Number(s):
[15997]
Open Access
Abstract: High-resolution structural studies have mainly focused on two out of the six adenovirus genera: mastadenoviruses and atadenoviruses. Here we report the high-resolution structure of an aviadenovirus, the poultry pathogen fowl adenovirus serotype 4 (FAdV-C4). FAdV-C4 virions are highly thermostable, despite lacking minor coat and core proteins shown to stabilize the mast- and atadenovirus particles, having no genus-specific cementing proteins, and packaging a 25% longer genome. Unique structural features of the FAdV-C4 hexon include a large insertion at the trimer equatorial region, and a long N-terminal tail. Protein IIIa conformation is closer to atadenoviruses than to mastadenoviruses, while protein VIII diverges from all previously reported structures. We interpret these differences in light of adenovirus evolution. Finally, we discuss the possible role of core composition in determining capsid stability properties. These results enlarge our view on the structural diversity of adenoviruses, and provide useful information to counteract fowl pathogens or use non-human adenoviruses as vectors.
|
Oct 2025
|
|
Krios I-Titan Krios I at Diamond
Krios II-Titan Krios II at Diamond
Krios III-Titan Krios III at Diamond
|
Diamond Proposal Number(s):
[28549, 33974]
Abstract: Cyclin-dependent kinases (CDKs) are prototypical regulators of the cell cycle. The CDK-activating kinase (CAK) acts as a master regulator of CDK activity by catalyzing the activating phosphorylation of CDKs on a conserved threonine residue within the regulatory T-loop. However, structural data illuminating the mechanism by which the CAK recognizes and activates CDKs have remained elusive. Here, we determine high-resolution structures of the CAK in complex with CDK2 and CDK2-cyclin A2 by cryogenic electron microscopy. Our structures reveal a T-loop–independent kinase-kinase interface with contributions from both kinase lobes. Computational analysis and structures of CAK in complex with CDK1-cyclin B1 and CDK11 indicate that these structures represent the general architecture of CAK-CDK complexes. These results advance our mechanistic understanding of cell cycle regulation and kinase signaling cascades.
|
Oct 2025
|
|
Krios I-Titan Krios I at Diamond
Krios II-Titan Krios II at Diamond
Krios III-Titan Krios III at Diamond
Krios IV-Titan Krios IV at Diamond
Krios V-Titan Krios V at Diamond
|
Diamond Proposal Number(s):
[29255, 36408, 27436, 33941]
Open Access
Abstract: Detergent solubilisation remains the most commonly used but potentially problematic method to extract membrane proteins from lipid bilayers for Cryo-EM studies. Although recent advances have introduced excellent alternatives—such as amphipols, nanodiscs and SMALPs—the use of detergents is often necessary for intermediate steps. In this paper, we share our experiences working with detergent-solubilised samples within the modern Cryo-EM structural pipeline from the perspective of an EM specialist. Our aim is to inform novice users about potential challenges they may encounter. Drawing on specific examples from a variety of biological membrane systems, including Magnesium channels, lipopolysaccharide biosynthesis, and the human major facilitator superfamily transporters, we describe how the intrinsic properties of detergent-extracted samples can affect protein purification, Cryo-EM grid preparation (including the formation of vitreous ice) and the reconstitution of proteins into micelles. We also discuss how these unique characteristics can impact different stages of structural analysis and lead to complications in single-particle averaging software analysis. For each case, we present our insights into the underlying causes and suggest possible mitigations or alternative approaches.
|
Sep 2025
|
|
Krios II-Titan Krios II at Diamond
|
Diamond Proposal Number(s):
[34108]
Open Access
Abstract: Understanding the molecular basis of regulated nitrogen (N2) fixation is essential for engineering N2-fixing bacteria that fulfill the demand of crop plants for fixed nitrogen, reducing our reliance on synthetic nitrogen fertilizers. In Azotobacter vinelandii and many other members of Proteobacteria, the two-component system comprising the anti-activator protein (NifL) and the Nif-specific transcriptional activator (NifA)controls the expression of nif genes, encoding the nitrogen fixation machinery. The NifL-NifA system evolved the ability to integrate several environmental cues, such as oxygen, nitrogen, and carbon availability. The nitrogen fixation machinery is thereby only activated under strictly favorable conditions, enabling diazotrophs to thrive in competitive environments. While genetic and biochemical studies have enlightened our understanding of how NifL represses NifA, the molecular basis of NifA sequestration by NifL depends on structural information on their interaction. Here, we present mechanistic insights into how nitrogen fixation is regulated by combining biochemical and genetic approaches with a low-resolution cryo-electron microscopy (cryo-EM) map of the oxidized NifL-NifA complex. Our findings define the interaction surface between NifL and NifA and reveal how this interaction can be manipulated to generate bacterial strains with increased nitrogen fixation rates able to secrete surplus nitrogen outside the cell, a crucial step in engineering improved nitrogen delivery to crop plants.
|
Sep 2025
|
|
Krios II-Titan Krios II at Diamond
Krios III-Titan Krios III at Diamond
|
Diamond Proposal Number(s):
[33974]
Open Access
Abstract: CDK7 has emerged as a cancer target because of its pivotal roles in cell cycle progression and transcription. Several CDK7 inhibitors (CDK7i) are now in clinical evaluation. Identifying patients most likely to respond to treatment and early detection of tumour evolution towards resistance are necessary for optimal implementation of cancer therapies. Continuous culturing of prostate cancer cells with Samuraciclib, a non-covalent ATP-competitive CDK7i, led to outgrowth of resistant cells. These were characterised by the acquisition of a single base change in the CDK7 gene, Asp97 to Asn (D97N). Mutant cells were resistant to other non-covalent CDK7i but remained sensitive to covalent CDK7i. Cryo-EM structure and kinase ligand affinity determinations revealed reduced affinity of the CDK7-D97N mutant for non-covalent CDK7i. Remarkably, Asp97 is absolutely conserved in human CDKs, inferring its importance for the activities of all CDKs. Consistent with this, mutation of the homologous residue in CDK12 (D819N) or CDK4 (D99N) promoted resistance to drugs that inhibit these CDKs. Our findings reveal a general mechanism for acquired resistance with obvious implications for patients treated with CDK inhibitors.
|
Sep 2025
|
|
Krios II-Titan Krios II at Diamond
Krios III-Titan Krios III at Diamond
|
Diamond Proposal Number(s):
[29812]
Open Access
Abstract: SARS-CoV-2 entry into host cells is mediated by the spike protein, which drives membrane fusion. While cryo-EM reveals stable prefusion and postfusion conformations of the spike, the transient fusion intermediate states during the fusion process remain poorly understood. Here, we design a near-native viral fusion system that recapitulates SARS-CoV-2 entry and use cryo-electron tomography (cryo-ET) to capture fusion intermediates leading to complete fusion. The spike protein undergoes extensive structural rearrangements, progressing through extended, partially folded, and fully folded intermediates prior to fusion-pore formation, a process that depends on protease cleavage and is inhibited by the WS6 S2 antibody. Upon interaction with ACE2 receptor dimer, spikes cluster at membrane interfaces and following S2’ cleavage concurrently transition to postfusion conformations encircling the hemifusion and initial fusion pores in a distinct conical arrangement. S2’ cleavage is indispensable for advancing fusion intermediates to the fully folded postfusion state, culminating in membrane integration. Subtomogram averaging reveals that the WS6 S2 antibody binds to the spike’s stem-helix, crosslinks and clusters prefusion spikes, as well as inhibits refolding of fusion intermediates. These findings elucidate the entire process of spike-mediated fusion and SARS-CoV-2 entry, highlighting the neutralizing mechanism of S2-targeting antibodies.
|
Jun 2025
|
|
Krios I-Titan Krios I at Diamond
Krios II-Titan Krios II at Diamond
|
Diamond Proposal Number(s):
[21404]
Open Access
Abstract: Auxins are a group of phytohormones that control plant growth and development. Their crucial role in plant physiology has inspired development of potent synthetic auxins that can be used as herbicides. Phenoxyacetic acid derivatives are a widely used group of auxin herbicides in agriculture and research. Despite their prevalence, the identity of the transporters required for distribution of these herbicides in plants is both poorly understood and the subject of controversial debate. Here we show that PIN-FORMED auxin transporters transport a range of phenoxyacetic acid herbicides across the membrane. We go on to characterize the molecular determinants of substrate specificity using a variety of different substrates as well as protein mutagenesis to probe the binding site. Finally, we present cryogenic electron microscopy structures of Arabidopsis thaliana PIN8 bound to either 2,4-dichlorophenoxyacetic acid or 4-chlorophenoxyacetic acid. These structures represent five key states from the transport cycle, allowing us to describe conformational changes associated with the transport cycle. Overall, our results reveal that phenoxyacetic acid herbicides use the same export machinery as endogenous auxins and exemplify how transporter binding sites undergo transformations that dictate substrate specificity. These results provide a foundation for future development of novel synthetic auxins and for precision breeding of herbicide-resistant crop plants.
|
Apr 2025
|
|
Krios II-Titan Krios II at Diamond
Krios IV-Titan Krios IV at Diamond
|
Zhuoyao
Chen
,
Gamma
Chi
,
Timea
Balo
,
Xiangrong
Chen
,
Beatriz Ralsi
Montes
,
Steven C.
Clifford
,
Vincenzo
D'Angiolella
,
Timea
Szabo
,
Arpad
Kiss
,
Tibor
Novak
,
András
Herner
,
András
Kotschy
,
Alex N.
Bullock
Diamond Proposal Number(s):
[34631]
Open Access
Abstract: Neomorphic mutations and drugs can elicit unanticipated effects that require mechanistic understanding to inform clinical practice. Recurrent indel mutations in the Kelch domain of the KBTBD4 E3 ligase rewire epigenetic programs for stemness in medulloblastoma by recruiting LSD1-CoREST-HDAC1/2 complexes as neo-substrates for ubiquitination and degradation. UM171, an investigational drug for haematopoietic stem cell transplantation, was found to degrade LSD1-CoREST-HDAC1/2 complexes in a wild-type KBTBD4-dependent manner, suggesting a potential common mode of action. Here, we identify that these neomorphic interactions are mediated by the HDAC deacetylase domain. Cryo-EM studies of both wild-type and mutant KBTBD4 capture 2:1 and 2:2 KBTBD4-HDAC2 complexes, as well as a 2:1:1 KBTBD4-HDAC2-CoREST1 complex, at resolutions spanning 2.7 to 3.3 Å. The mutant and drug-induced complexes adopt similar structural assemblies requiring both Kelch domains in the KBTBD4 dimer for each HDAC2 interaction. UM171 is identified as a bona fide molecular glue binding across the ternary interface. Most strikingly, the indel mutation reshapes the same surface of KBTBD4 providing an example of a natural mimic of a molecular glue. Together, the structures provide mechanistic understanding of neomorphic KBTBD4, while structure-activity relationship (SAR) analysis of UM171 reveals analog S234984 as a more potent molecular glue for future studies.
|
Apr 2025
|
|
Krios II-Titan Krios II at Diamond
|
Diamond Proposal Number(s):
[35989]
Open Access
Abstract: The antibiotic resistance protein FusB rescues protein synthesis from inhibition by fusidic acid (FA), which locks elongation factor G (EF-G) to the ribosome after GTP hydrolysis. Here, we present time-resolved single–particle cryo-EM structures explaining the mechanism of FusB-mediated rescue. FusB binds to the FA-trapped EF-G on the ribosome, causing large-scale conformational changes of EF-G that break interactions with the ribosome, tRNA, and mRNA. This leads to dissociation of EF-G from the ribosome, followed by FA release. We also observe two independent binding sites of FusB on the classical-state ribosome, overlapping with the binding site of EF-G to each of the ribosomal subunits, yet not inhibiting tRNA delivery. The affinity of FusB to the ribosome and the concentration of FusB in S. aureus during FusB-mediated resistance support that direct binding of FusB to ribosomes could occur in the cell. Our results reveal an intricate resistance mechanism involving specific interactions of FusB with both EF-G and the ribosome, and a non-canonical release pathway of EF-G.
|
Apr 2025
|
|
Krios II-Titan Krios II at Diamond
|
Naito
Ishimoto
,
Joshua L. C.
Wong
,
Shan
He
,
Sally
Shirran
,
Olivia
Wright-Paramio
,
Chloe
Seddon
,
Nanki
Singh
,
Carlos
Balsalobre
,
Ravi R.
Sonani
,
Abigail
Clements
,
Edward H.
Egelmane
,
Gad
Frankel
,
Konstantinos
Beis
Diamond Proposal Number(s):
[33230]
Open Access
Abstract: Conjugation, the major driver of the spread of antimicrobial resistance genes, relies on a conjugation pilus for DNA transfer. Conjugative pili, such as the F-pilus, are dynamic tubular structures, composed of a polymerized pilin, that mediate the initial donor–recipient interactions, a process known as mating pair formation (MPF). IncH are low-copy-number plasmids, traditionally considered broad host range, which are found in bacteria infecting both humans and animals. The reference IncHI1 plasmid R27, isolated from Salmonella enterica serovar Typhi, encodes the conjugative H-pilus subunit TrhA containing 74 residues after cleavage of the signal sequence. Here, we show that the H-pilus forms long filamentous structures that mediate MPF and describe its cryoelectron-microscopic (cryo-EM) structure at 2.2 Å resolution. Like the F pilus, the H-pilin subunits form helical assemblies with phospholipid molecules at a stoichiometric ratio of 1:1. While there were previous reports that the T-pilus from Agrobacterium tumefaciens was composed of cyclic subunits, three recent cryo-EM structures of the T-pilus found no such cyclization. Here, we report that the H-pilin is cyclic, with a covalent bond connecting the peptide backbone between the N and C termini. Both the cryo-EM map and mass spectrometry revealed cleavage of the last five residues of the pilin, followed by cyclization via condensation of the amine and carboxyl residues. Mutagenesis experiments revealed that loss of cyclization abolished pilus biogenesis and efficient plasmid transfer. The cyclic nature of the pilin could stabilize the pilus and may explain the high incidence of IncH plasmid dissemination.
|
Apr 2025
|
|