Krios IV-Titan Krios IV at Diamond
Scios-Scios at Diamond
|
Diamond Proposal Number(s):
[29609]
Open Access
Abstract: Silica cell-wall formation in diatoms is a showcase for the ability of organisms to control inorganic mineralization. The process of silicification by these unicellular algae is tightly regulated within a membrane-bound organelle, the silica deposition vesicle (SDV). Two opposing scenarios were proposed to explain the tight regulation of this intracellular process: a template-mediated process that relies on preformed scaffolds, or a template-independent self-assembly process. The present work points to a third scenario, where the SDV membrane is a dynamic mold that shapes the forming silica. We use in-cell cryo-electron tomography to visualize the silicification process in situ, in its native-state, and with a nanometer-scale resolution. This reveals that the plasma membrane interacts with the SDV membrane via physical tethering at membrane contact sites, where the curvature of the tethered side of the SDV membrane mirrors the intricate silica topography. We propose that silica growth and morphogenesis result from the biophysical properties of the SDV and plasma membranes.
|
Sep 2024
|
|
Scios-Scios at Diamond
|
Open Access
Abstract: Cryo-electron tomography (cryo-ET) and subtomogram averaging (STA) are increasingly used for macromolecular structure determination in situ. Here, we introduce a set of computational tools and resources designed to enable flexible approaches to STA through increased automation and simplified metadata handling. We create a bidirectional interface between the Dynamo software package and the Warp-Relion-M pipeline, providing a framework for ab initio and geometrical approaches to multiparticle refinement in M. We illustrate the power of working within this framework by applying it to EMPIAR-10164, a publicly available dataset containing immature HIV-1 virus-like particles (VLPs), and a challenging in situ dataset containing chemosensory arrays in bacterial minicells. Additionally, we provide a comprehensive, step-by-step guide to obtaining a 3.4-Å reconstruction from EMPIAR-10164. The guide is hosted on https://teamtomo.org/, a collaborative online platform we establish for sharing knowledge about cryo-ET.
|
Aug 2021
|
|
Scios-Scios at Diamond
|
Diamond Proposal Number(s):
[21004]
Open Access
Abstract: Presented here is a protocol for preparing cryo-lamellae from plunge-frozen grids of Plasmodium falciparum-infected human erythrocytes, which could easily be adapted for other biological samples. The basic principles for preparing samples, milling, and viewing lamellae are common to all instruments and the protocol can be followed as a general guide to on-grid cryo-lamella preparation for cryo-electron microscopy (cryoEM) and cryo-electron tomography (cryoET). Electron microscopy grids supporting the cells are plunge-frozen into liquid nitrogen-cooled liquid ethane using a manual or automated plunge freezer, then screened on a light microscope equipped with a cryo-stage. Frozen grids are transferred into a cryo-scanning electron microscope equipped with a focused ion beam (cryoFIB-SEM). Grids are routinely sputter coated prior to milling, which aids dispersal of charge build-up during milling. Alternatively, an e-beam rotary coater can be used to apply a layer of carbon-platinum to the grids, the exact thickness of which can be more precisely controlled. Once inside the cryoFIB-SEM an additional coating of an organoplatinum compound is applied to the surface of the grid via a gas injection system (GIS). This layer protects the front edge of the lamella as it is milled, the integrity of which is critical for achieving uniformly thin lamellae. Regions of interest are identified via SEM and milling is carried out in a step-wise fashion, reducing the current of the ion beam as the lamella reaches electron transparency, in order to avoid excessive heat generation. A grid with multiple lamellae is then transferred to a transmission electron microscope (TEM) under cryogenic conditions for tilt-series acquisition. A robust and contamination-free workflow for lamella preparation is an essential step for downstream techniques, including cellular cryoEM, cryoET, and sub-tomogram averaging. Development of these techniques, especially for lift-out and milling of high-pressure frozen samples, is of high-priority in the field.
|
Aug 2021
|
|
Scios-Scios at Diamond
|
Matthew D.
Figley
,
Weixi
Gu
,
Jeffrey D.
Nanson
,
Yun
Shi
,
Yo
Sasaki
,
Katie
Cunnea
,
Alpeshkumar K.
Malde
,
Xinying
Jia
,
Zhenyao
Luo
,
Forhad K.
Saikot
,
Tamim
Mosaiab
,
Veronika
Masic
,
Stephanie
Holt
,
Lauren
Hartley-Tassell
,
Helen Y.
Mcguinness
,
Mohammad K.
Manik
,
Todd
Bosanac
,
Michael J.
Landsberg
,
Philip S.
Kerry
,
Mehdi
Mobli
,
Robert O.
Hughes
,
Jeffrey
Milbrandt
,
Bostjan
Kobe
,
Aaron
Diantonio
,
Thomas
Ve
Diamond Proposal Number(s):
[24981]
Abstract: Axon degeneration is a central pathological feature of many neurodegenerative diseases. Sterile alpha and Toll/interleukin-1 receptor motif-containing 1 (SARM1) is a nicotinamide adenine dinucleotide (NAD+)-cleaving enzyme whose activation triggers axon destruction. Loss of the biosynthetic enzyme NMNAT2, which converts nicotinamide mononucleotide (NMN) to NAD+, activates SARM1 via an unknown mechanism. Using structural, biochemical, biophysical, and cellular assays, we demonstrate that SARM1 is activated by an increase in the ratio of NMN to NAD+ and show that both metabolites compete for binding to the auto-inhibitory N-terminal armadillo repeat (ARM) domain of SARM1. We report structures of the SARM1 ARM domain bound to NMN and of the homo-octameric SARM1 complex in the absence of ligands. We show that NMN influences the structure of SARM1 and demonstrate via mutagenesis that NMN binding is required for injury-induced SARM1 activation and axon destruction. Hence, SARM1 is a metabolic sensor responding to an increased NMN/NAD+ ratio by cleaving residual NAD+, thereby inducing feedforward metabolic catastrophe and axonal demise.
|
Apr 2021
|
|