I14-Hard X-ray Nanoprobe
|
Diamond Proposal Number(s):
[22977]
Open Access
Abstract: Background: Established MRI and emerging X-ray contrast agents for non-invasive imaging of articular cartilage rely on non-selective electrostatic interactions with negatively charged proteoglycans. These contrast agents have limited prognostic utility in diseases such as osteoarthritis (OA) due to the characteristic high turnover of proteoglycans. To overcome this limitation, we developed a radiocontrast agent that targets the type II collagen macromolecule in cartilage and used it to monitor disease progression in a murine model of OA. Methods: To confer radiopacity to cartilage contrast agents, the naturally occurring tyrosine derivative 3,5-diiodo-L-tyrosine (DIT) was introduced into a selective peptide for type II collagen. Synthetic DIT peptide derivatives were synthesised by Fmoc-based solid-phase peptide synthesis and binding to ex vivo mouse tibial cartilage evaluated by high-resolution micro-CT. Di-Iodotyrosinated Peptide Imaging of Cartilage (DIPIC) was performed ex vivo and in vivo 4, 8 and 12 weeks in mice after induction of OA by destabilisation of the medial meniscus (DMM). Finally, human osteochondral plugs were imaged ex vivo using DIPIC. Results: Fifteen DIT peptides were synthesised and tested, yielding seven leads with varying cartilage binding strengths. DIPIC visualised ex vivo murine articular cartilage comparably to the ex vivo contrast agent phosphotungstic acid. Intra-articular injection of contrast agent followed by in vivo DIPIC enabled delineation of damaged murine articular cartilage. Finally, the translational potential of the contrast agent was confirmed by visualisation of ex vivo human cartilage explants. Conclusion: DIPIC has reduction and refinement implications in OA animal research and potential clinical translation to imaging human disease.
|
May 2022
|
|
I14-Hard X-ray Nanoprobe
|
Open Access
Abstract: A new stage design concept, the Delta Robot, is presented, which is a parallel kinematic design for scanning x-ray microscopy applications. The stage employs three orthogonal voice coils, which actuate parallelogram flexures. The design has a 3 mm travel range and achieves rms position jitter, integrated from 1 Hz to 1 kHz, of 2.8 and 1.3 nm perpendicular to the beam and 5.6 nm along the beam direction with loads up to 350 g. The Delta Robot design process used a mechatronics approach of iterative modeling and simulation to develop the system and validate performance. The design considerations, design process, stability, and operational performance on the hard x-ray nanoprobe at Diamond Light Source are presented.
|
Apr 2022
|
|
I14-Hard X-ray Nanoprobe
|
Diamond Proposal Number(s):
[20036, 22509]
Open Access
Abstract: To improve the understanding of catalysts, and ultimately the ability to design better materials, it is crucial to study them during their catalytic active states. Using in situ or operando conditions allows insights into structure–property relationships, which might not be observable by ex situ characterization. Spatially resolved X-ray fluorescence, X-ray diffraction and X-ray absorption near-edge spectroscopy are powerful tools to determine structural and electronic properties, and the spatial resolutions now achievable at hard X-ray nanoprobe beamlines make them an ideal complement to high-resolution transmission electron microscopy studies in a multi-length-scale analysis approach. The development of a system to enable the use of a commercially available gas-cell chip assembly within an X-ray nanoprobe beamline is reported here. The novel in situ capability is demonstrated by an investigation of the redox behaviour of supported Pt nanoparticles on ceria under typical lean and rich diesel-exhaust conditions; however, the system has broader application to a wide range of solid–gas reactions. In addition the setup allows complimentary in situ transmission electron microscopy and X-ray nanoprobe studies under identical conditions, with the major advantage compared with other systems that the exact same cell can be used and easily transferred between instruments. This offers the exciting possibility of studying the same particles under identical conditions (gas flow, pressure, temperature) using multiple techniques.
|
Mar 2022
|
|
I14-Hard X-ray Nanoprobe
|
Diamond Proposal Number(s):
[22484]
Open Access
Abstract: We have spatially investigated lattice spacing, twist, and bending in individual laterally (110)-oriented Ge nanowires (NWs) on pre-patterned Si(001) substrates. A combination of synchrotron-based scanning x-ray diffraction microscopy with an x-ray focus size of 50 nm and numerical finite element calculations on the elastic strain reveals a three-dimensional relaxation scenario, which becomes particularly complex next to NW nucleation points. Despite a lattice mismatch of 4.2%, lattice compliance is preserved, since strain can effectively be released close to the seeding window. Areas in the NWs other than that appear fully relaxed. The resulting NW twist, i.e., lattice rotations around the growth axis, amounts to less than 0.1°.
|
Mar 2022
|
|
E02-JEM ARM 300CF
I14-Hard X-ray Nanoprobe
|
Diamond Proposal Number(s):
[25250, 20420]
Abstract: The interaction of high-energy electrons and X-ray photons with beam-sensitive semiconductors such as halide perovskites is essential for the characterisation and understanding of these optoelectronic materials. Using nano-probe diffraction techniques, which can investigate physical properties on the nanoscale, we perform studies of the interaction of electron and X-ray radiation with state-of-the-art (FA0.79MA0.16Cs0.05)Pb(I0.83Br0.17)3 hybrid halide perovskite films (FA, formamidinium; MA, methylammonium). We track the changes in the local crystal structure as a function of fluence using scanning electron diffraction and synchrotron nano X-ray diffraction techniques. We identify perovskite grains from which additional reflections, corresponding to PbBr2, appear as a crystalline degradation phase after fluences of ∼200 e–Å–2. These changes are concomitant with the formation of small PbI2 crystallites at the adjacent high-angle grain boundaries, with the formation of pinholes, and with a phase transition from tetragonal to cubic. A similar degradation pathway is caused by photon irradiation in nano-X-ray diffraction, suggesting common underlying mechanisms. Our approach explores the radiation limits of these materials and provides a description of the degradation pathways on the nanoscale. Addressing high-angle grain boundaries will be critical for the further improvement of halide polycrystalline film stability, especially for applications vulnerable to high-energy radiation such as space photovoltaics.
|
Mar 2022
|
|
E02-JEM ARM 300CF
I14-Hard X-ray Nanoprobe
|
Tiarnan A. S.
Doherty
,
Dominik
Kubicki
,
Stuart
Macpherson
,
Young-Kwang
Jung
,
Duncan
Johnstone
,
Affan
Iqbal
,
Dengyang
Guo
,
Kyle
Frohna
,
Mohsen
Danaie
,
Elizabeth
Tennyson
,
Satyawan
Nagane
,
Anna
Abfalterer
,
Miguel
Anaya
,
Yu-Hsien
Chiang
,
Phillip
Crout
,
Francesco Simone
Ruggeri
,
Sean
Collins
,
Clare
Grey
,
Aron
Walsh
,
Paul
Midgley
,
Samuel
Stranks
Diamond Proposal Number(s):
[20420, 24111]
Abstract: There is currently substantial interest in stabilizing the simple ternary FAPbI3 perovskite because of its near-optimal band gap and superior thermal stability compared to methylammonium-based materials.1 The key challenge of FAPbI3 is the thermodynamic instability of the polymorph required for efficient light harvesting. Without additives, the black photoactive α-polymorph is only stable above ca. 160°C. At room temperature, it is metastable and rapidly transitions to the non-perovskite yellow polymorph. The stabilization of the black polymorph at room temperature can be achieved, for example, by adding a small amount of the pernicious MA through use of methylammonium chloride (in conjunction with formamidinium formate),2 methylammonium thiocyanate,3 or methylammonium formate.4 We have developed a new stabilization strategy which does not involve the addition of MA.5 Instead, it uses a surface-templating agent (EDTA) which modifies the material without incorporating into the structure. We use a combination of scanning electron diffraction (SED) and nuclear magnetic resonance spectroscopies (NMR, NQR) to identify the atomic-level mechanism of action of EDTA in this role. We find that it templates the structure by inducing a small octahedral tilt, only resolvable with local characterization techniques, and imparts remarkable phase stability by arresting transitions to low-dimensional polymorphs. This octahedral tilt engineering strategy is remarkably universal, and we show that it is the intrinsic stabilization mechanism in the state-of-the-art FA-rich mixed-cation materials.
|
Feb 2022
|
|
I14-Hard X-ray Nanoprobe
I18-Microfocus Spectroscopy
|
Abstract: New mineralogical studies of Lafayette reveal that it contains a notably variable abundance of martian carbonate. Four percent was identified in mesostasis (3.2%) and olivine-hosted (0.8%) fractures in one polished section, but only 0.2% of both textural types in another. The Lafayette carbonates are Mg0.0-2.0Cc13.2-38.6Sd17.7-81.9Rh3.1-42.9. They have undergone variable but extensive amounts of dissolution and replacement as the nakhlite secondary fluid evolved, associated with the precipitation of ferric saponite in olivine fractures and a serpentine-like phyllosilicate in the mesostasis. The mesostasis carbonate has undergone the highest degree of corrosion and replacement. TEM analysis has shown the presence of Fe-(hydr)oxide (likely ferrihydrite) nanoparticles on olivine-hosted carbonates which can be linked to the cessation of more extensive carbonate dissolution at those sites. The mesostasis serpentine-like mineral has been described here on the basis of WDS and EDX analyses, HRTEM and Fe-K XANES, as odinite, a ferric, 0.7 nm d001-spacings phyllosilicate mineral with a characteristic 1:1 serpentine-like structure. The carbonate dissolution stage and then formation of Fe-(hydr)oxide nanoparticles occurred under circumneutral-alkaline conditions 7 < pH < 10. This range of pH is also where the general dissolution mechanism switched from a proton-promoted, to a water hydrolysis reaction associated with a reduction in the dissolution rates. As dissolution rates were reduced and the fluid had cooled to ≤50°C, the precipitation of the ferric saponite and odinite, a phyllosilicate associated with temperatures of ∼25°C, dominated over the carbonate dissolution. The extensive dissolution of such crustal carbonate across the upper martian crust, producing bicarbonate and carbon dioxide, and the coupled formation of ferric phyllosilicates, would lead to the formation of CH4 in substantial amounts via a Fischer-Tropsch type reaction. The results of our study illustrate a process to explain the relatively low abundance of detected carbonate on Mars and a likely source for some of the methane on Mars.
|
Feb 2022
|
|
E02-JEM ARM 300CF
I14-Hard X-ray Nanoprobe
|
Tiarnan A. S.
Doherty
,
Satyawan
Nagane
,
Dominik J.
Kubicki
,
Young-Kwang
Jung
,
Duncan N.
Johnstone
,
Affan N.
Iqbal
,
Dengyang
Guo
,
Kyle
Frohna
,
Mohsen
Danaie
,
Elizabeth M.
Tennyson
,
Stuart
Macpherson
,
Anna
Abfalterer
,
Miguel
Anaya
,
Yu-Hsien
Chiang
,
Phillip
Crout
,
Francesco Simone
Ruggeri
,
Sean M.
Collins
,
Clare P.
Grey
,
Aron
Walsh
,
Paul A.
Midgley
,
Samuel D.
Stranks
Diamond Proposal Number(s):
[20420, 24111]
Abstract: Efforts to stabilize photoactive formamidinium (FA)–based halide perovskites for perovskite photovoltaics have focused on the growth of cubic formamidinium lead iodide (α-FAPbI3) phases by empirically alloying with cesium, methylammonium (MA) cations, or both. We show that such stabilized FA-rich perovskites are noncubic and exhibit ~2° octahedral tilting at room temperature. This tilting, resolvable only with the use of local nanostructure characterization techniques, imparts phase stability by frustrating transitions from photoactive to hexagonal phases. Although the bulk phase appears stable when examined macroscopically, heterogeneous cation distributions allow microscopically unstable regions to form; we found that these transitioned to hexagonal polytypes, leading to local trap-assisted performance losses and photoinstabilities. Using surface-bound ethylenediaminetetraacetic acid, we engineered an octahedral tilt into pure α-FAPbI3 thin films without any cation alloying. The templated photoactive FAPbI3 film was extremely stable against thermal, environmental, and light stressors.
|
Dec 2021
|
|
I14-Hard X-ray Nanoprobe
I18-Microfocus Spectroscopy
|
Abstract: This thesis focuses on the mineralogical study of altered martian meteorites and the development of a novel wet-chemistry instrument. X-ray spectroscopy and electron microscopy have been used to investigate the secondary mineralogy of martian meteorites and their associated fluids. Martian analogue brines were investigated with transmission spectroscopy in order to address the technique’s capabilities for detecting dilute, astrobiologically significant fluids.
The newly-found martian shergottite, Northwest Africa (NWA) 10416, bears a distinctive colouration in its olivine megacrysts which is suggestive of hydrous alteration. The meteorite has been petrographically characterised and the origin of its alteration has been determined as terrestrial. Oxygen isotope analysis and the observation of secondary phases within shock features using Transmission Electron Microscopy (TEM) have indicated a terrestrial fluid. Synchrotron X-ray Absorption Spectroscopy (XAS), X-ray Diffraction (XRD) and Electron Probe Micro-Analysis (EPMA) have allowed its characterisation as a low-temperature, possibly acidic, fluid.
Analysis of the martian nakhlite, Lafayette, has been performed in order to assess the extent of carbonate dissolution by a hydrothermal martian fluid. Textures determined by Scanning Electron Microscopy (SEM) and TEM, and compositions determined by EPMA and XAS have displayed the variable nature of this dissolution and allowed the identification of the mesostasis phyllosilicate as odinite. This work has illustrated a process in which martian crustal fluids can dissolve carbonates and produce substantial amounts of methane, informing our understanding of martian atmospheric methane.
The capabilities of transmission spectroscopy when detecting organic martian analogue brines have been assessed to further the development of the wet-chemistry instrument, ASPIRE. Transmission spectroscopy was unsuccessful in detecting the likely low organic concentrations (ppb) expected in potentially habitable martian aqueous environments. However, future avenues of research have been suggested for consideration, including investigation into the potential of reflectance spectroscopy and calibration of ASPIRE to mineralogical-free regions within the infrared region.
|
Dec 2021
|
|
I14-Hard X-ray Nanoprobe
|
Diamond Proposal Number(s):
[23693, 23602]
Open Access
Abstract: Magnetotactic bacteria (MTB) sequester iron from the environment to biomineralize magnetite or greigite nanoparticles in magnetosome organelles, though the necessity of intracellular iron storage for the formation process is still in question. Understanding the role of iron storage would make clear the contribution of MTB in geochemical iron cycling and its potential importance during the biosynthesis of application-relevant magnetic nanoparticles. Herein, how scanning X-ray fluorescence microscopy (SXFM) and nanoscale X-ray absorption near-edge structure (nano-XANES) mapping can spatially and chemically identify intracellular iron species is reported, creating an opportunity to examine the role of iron storage in magnetite biomineralization at the single-cell level. Fe K-edge nano-XANES measurements of Magnetospirillum gryphiswaldense in varied iron media conditions and iron storage capacity reveal a significant quantity of intracellular iron heterogeneities through a distinction between formed magnetosomes and intracellular iron material. This intracellular iron component is found in both early and late stages of biomineralization. The capabilities of nano-XANES in providing an experimental advantage in the multidisciplinary field of biomineralization are highlighted.
|
Dec 2021
|
|