DIAD-Dual Imaging and Diffraction Beamline
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[32980]
Open Access
Abstract: Machine learning techniques are being increasingly applied in medical and physical sciences across a variety of imaging modalities; however, an important issue when developing these tools is the availability of good quality training data. Here we present a unique, multimodal synchrotron dataset of a bespoke zinc-doped Zeolite 13X sample that can be used to develop advanced deep learning and data fusion pipelines. Multi-resolution micro X-ray computed tomography was performed on a zinc-doped Zeolite 13X fragment to characterise its pores and features before spatially resolved X-ray diffraction computed tomography was carried out to characterise the topographical distribution of sodium and zinc phases. Zinc absorption was controlled to create a simple, spatially isolated, two-phase material. Both raw and processed data are available as a series of Zenodo entries. Altogether we present a spatially resolved, three-dimensional, multimodal, multi-resolution dataset that can be used to develop machine learning techniques. Such techniques include the development of super-resolution, multimodal data fusion, and 3D reconstruction algorithms.
|
Feb 2025
|
|
DIAD-Dual Imaging and Diffraction Beamline
I12-JEEP: Joint Engineering, Environmental and Processing
|
Franck P.
Vidal
,
Shaghayegh
Afshari
,
Sharif
Ahmed
,
Carolyn
Atkins
,
Eric
Béchet
,
Alberto
Corbi Bellot
,
Stefan
Bosse
,
Younes
Chahid
,
Cheng-Ying
Chou
,
Robert
Culver
,
Lewis
Dixon
,
Johan
Friemann
,
Amin
Garbout
,
Clémentine
Hatton
,
Audrey
Henry
,
Christophe
Leblanc
,
Alberto
Leonardi
,
Jean Michel
Létang
,
Harry
Lipscom
,
Tristan
Manchester
,
Bas
Meere
,
Simon
Middleburgh
,
Iwan
Mitchell
,
Liam
Perera
,
Marti
Puig Fantauzzi
,
Jenna
Tugwell-Allsup
Diamond Proposal Number(s):
[29820]
Abstract: gVirtualXray (gVXR) is an open-source framework that relies on the Beer-Lambert law to simulate x-ray images in real time on a graphics processor unit (GPU) using triangular meshes. A wide range of programming languages is supported (C/C++, Python, R, Ruby, Tcl, C#, Java, and GNU Octave). Simulations generated with gVXR have been benchmarked with clinically realistic phantoms (i.e. complex structures and materials) using Monte Carlo (MC) simulations, real radiographs and real digitally reconstructed radiographs (DRRs), and x-ray computed tomography (CT). It has been used in a wide range of applications, including real-time medical simulators, proposing a new densitometric radiographic modality in clinical imaging, studying noise removal techniques in fluoroscopy, teaching particle physics and x-ray imaging to undergraduate students in engineering, and XCT to masters students, predicting image quality and artifacts in material science, etc. gVXR has also been used to produce a high number of realistic simulated images in optimization problems and to train machine learning algorithms. This paper presents applications of gVXR related to XCT.
|
Oct 2024
|
|
DIAD-Dual Imaging and Diffraction Beamline
I11-High Resolution Powder Diffraction
I12-JEEP: Joint Engineering, Environmental and Processing
|
Open Access
Abstract: The plumes of Enceladus contain a non-ice component that originates from aqueous processes occurring within the interior 1,2. The ocean of Enceladus is thought to be connected to the surface across a range of time scales. These processes range from the rapid eruption of cryovolcanic plumes to slow crustal convection on geological timescales3,4. In every case, the system will have a temperature and geochemical evolution as it freezes, with the history of evolution recorded in the sequence of mineral precipitation. Analogously to igneous and metamorphic petrology, we can explore the mineralogy and its context to reconstruct the history of that sample. Most importantly, for astrobiological investigations, the formation and cryo-petrological study of inorganic salts can be used to identify sites of recent exposure on the surface.
Synchrotron X-ray techniques allow fast, high-resolution probing of these systems with X-ray light. By exploring large, multi-component samples with multiple techniques, with variable temperature over time we can reveal many emergent processes that may not be predictable with simple phase diagrams.
We use a combination of synchrotron powder X-ray diffraction (PXRD) and X-ray microtomography (µCT) across multiple beamlines at Diamond Light Source (I11, I12 and DIAD). Using a multi-modal approach, we present an in-situ study of the low-temperature phase behaviour of Na-Cl-HCO3 fluids. We employ K11-DIAD (Dual Imaging and Diffraction) to carry out ‘image-guided diffraction’ on an Enceladus-type sample frozen in real-time. DIAD’s unique capabilities allow us not only to study microstructure down to 1 µm but also to carry out spatially resolved XRD and identify solid phases present.
We present, for the first time, the use of dual imaging and diffraction of a Na-Cl-CO₃ solution frozen in real time in 3 dimensions [Figure 1]. DIAD’s imaged guided diffraction provides spatially-resolved XRD, allowing us to probe different regions of our sample and identify the formation of Na2CO₃ hydrates. We show the influence of carbonate chemistry on the sequence of cryogenic precipitation and the development of complex microstructures. These results provide insights into crustal transport processes and will help with interpreting observational data from upcoming Galilean missions.
|
Sep 2024
|
|
DIAD-Dual Imaging and Diffraction Beamline
|
Diamond Proposal Number(s):
[33442]
Open Access
Abstract: The ability to control the stress-induced phase transformation of the shape memory alloy, NiTi, is an important technological challenge that must be understood for their wide application in devices that can exploit their reversible strain properties. This study elucidates the direct relationship between dislocation density and the martensitic, B19' & R-phase transformations, including its formation temperature from interrupted annealing of rolled NiTi samples. Deformation is shown to determine the enthalpy change required for the B2→R→B19' transformation, with associated transformation temperatures being modifiable via dislocation density and recovery processes. Recovery is shown to be rapid, highly heterogeneous and sensitive to crystal orientation. Grains with a 〈100〉 direction close to the macroscopic rolling direction recover more rapidly than 〈110〉 and 〈111〉 orientated grains. Considered to be governed by processing induced residual stresses and resultant crystallographic dependent annihilation/slip pathways, there are opportunities to tune B2→R→B19' transformation on either a grain-averaged or an orientation dependant per-grain basis.
|
Sep 2024
|
|
DIAD-Dual Imaging and Diffraction Beamline
|
Diamond Proposal Number(s):
[30971]
Open Access
Abstract: Controllable sorption selectivity in zeolites is crucial for their application in catalysis, gas separation and ion-exchange. Whilst existing approaches to achieving sorption selectivity with natural zeolites typically rely on screening for specific geological deposits, here we develop partial interzeolite transformation as a straightforward and highly tuneable method to achieve sorption selectivity via forming dual-phase composites with simultaneous control of both phase-ratio and morphology. The dual-cation (strontium and caesium) exchange properties of a series of granular mordenite/zeolite P composites formed from a parent natural mordenite material are demonstrated in complex, industrially relevant multi-ion environments pertinent to nuclear waste management. The relative uptake of caesium and strontium is controlled via the extent of transformation: composites exhibit significantly increased ion-exchange affinity for strontium compared to both the parent mordenite and physical mixtures of mordenite/zeolite P phases with similar phase ratios. The composite with a 40[thin space (1/6-em)]:[thin space (1/6-em)]60 mordenite[thin space (1/6-em)]:[thin space (1/6-em)]zeolite P ratio composite achieves higher uptake rates than the natural clinoptilolite material currently used to decontaminate nuclear waste streams at the Sellafield site, UK. In situ X-ray image-guided diffraction experiments during caesium exchange demonstrate that the mordenite core retains rapid caesium uptake likely responsible for the unique ion-exchange chemistry achievable through the partial inter-zeolite transformation. These results offer a straightforward and controllable route to optimised zeolite functionality and a strategy to engineer composites from low-grade natural sources at low cost and with formulation advantages for industrial deployment.
|
Aug 2024
|
|
DIAD-Dual Imaging and Diffraction Beamline
|
Himanshu
Vashishtha
,
Parastoo
Jamshidi
,
Anastasia
Vrettou
,
Anna
Kareer
,
Michael
Goode
,
Hans
Deyhle
,
Andrew
James
,
Sharif
Ahmed
,
Christina
Reinhard
,
Moataz M.
Attallah
,
David M.
Collins
Diamond Proposal Number(s):
[28029]
Open Access
Abstract: This study explores cardiovascular stents fabricated using laser powder bed fusion (LPBF) which is an emerging method to offer patient-specific customisable parts. Here, the shape memory alloy NiTi, in a near equiatomic composition, was investigated to deconvolve the material response from macroscopic component effects. Specifically, stress-geometry interactions were revealed, in-situ, for a minaturised cardiovascular stent subjected to an externally applied cylindrical stress whilst acquiring synchrotron X-ray imaging and diffraction data. The approach enabled the collection of spatially resolved micromechanical deformation data; the formation of stress-induced martensite and R-phase was evident, occurring in locations near junctions between stent ligaments where stress concentrations exist. In the as-fabricated condition, hardness maps were obtained through nanoindentation, demonstrating that the localised deformation and deformation patterning is further controlled by porosity and microstructural heterogeneity. Electron backscatter diffraction (EBSD) supported these observations, showing a finer grain structure near stent junctions with higher associated lattice curvature. These features, combined with stress concentrations when loaded will initiate localised phase transformations. If the stent was subjected to repeated loading, representing in-vivo conditions, these regions would be susceptible to cyclic damage through transformation memory loss, leading to premature component failure. This study highlights the challenges that must be addressed for the post-processing treatment of LPBF-processed stents for healthcare-related applications.
|
Jul 2024
|
|
DIAD-Dual Imaging and Diffraction Beamline
|
Diamond Proposal Number(s):
[28054]
Abstract: Diamond is home to an ever-evolving array of beamlines and instruments, allowing scientists from a wide variety of disciplines to collect high-quality, high-resolution data for their groundbreaking research. In materials science, X-ray imaging and tomography experiments can determine the 3D microstructure of samples, while X-ray diffraction techniques offer the phase composition and stress distribution. Most synchrotron beamlines are designed to offer one or the other, with a few that can do both – but not at the same time. Switching between the modes can be complicated and time consuming. Diamond’s Dual Imaging and Diffraction beamline (DIAD) provides both imaging and diffraction capabilities in one instrument. Its novel dual beam design operates with two independent beams meeting at the sample position, one setup for imaging and one for diffraction. By constantly switching between the two modes, DIAD enables in situ and in operando measurements and time-resolved studies. Understanding the complex structure of tooth enamel, the factors involved in its decay and potential strategies for its remineralisation exemplify some outstanding tasks in biomedical materials science that can benefit from the dual beamline approach. In work recently published in Chemical & Biomedical Imaging, a group of researchers from the University of Oxford and the University of Birmingham (led by Professor Alexander Korsunsky) detail a proof-of-concept study that demonstrated how the unique capabilities of DIAD can be used to consider different options for remineralisation and to grade them in terms of how well they work.
|
Jun 2024
|
|
DIAD-Dual Imaging and Diffraction Beamline
|
Cyril
Besnard
,
Ali
Marie
,
Sisini
Sasidharan
,
Hans
Deyhle
,
Andrew M.
James
,
Sharif I.
Ahmed
,
Christina
Reinhard
,
Robert A.
Harper
,
Richard M.
Shelton
,
Gabriel
Landini
,
Alexander M.
Korsunsky
Diamond Proposal Number(s):
[28054]
Open Access
Abstract: The Dual Imaging and Diffraction (DIAD) beamline at Diamond Light Source (Didcot, U.K.) implements a correlative approach to the dynamic study of materials based on concurrent analysis of identical sample locations using complementary X-ray modalities to reveal structural detail at various length scales. Namely, the underlying beamline principle and its practical implementation allow the collocation of chosen regions within the sample and their interrogation using real-space imaging (radiography and tomography) and reciprocal space scattering (diffraction). The switching between the two principal modes is made smooth and rapid by design, so that the data collected is interlaced to obtain near-simultaneous multimodal characterization. Different specific photon energies are used for each mode, and the interlacing of acquisition steps allows conducting static and dynamic experiments. Building on the demonstrated realization of this state-of-the-art approach requires further refining of the experimental practice, namely, the methods for gauge volume collocation under different modes of beam–sample interaction. To address this challenge, experiments were conducted at DIAD devoted to the study of human dental enamel, a hierarchical structure composed of hydroxyapatite mineral nanocrystals, as a static sample previously affected by dental caries (tooth decay) as well as under dynamic conditions simulating the process of acid demineralization. Collocation and correlation were achieved between WAXS (wide-angle X-ray scattering), 2D (radiographic), and 3D (tomographic) imaging. While X-ray imaging in 2D or 3D modes reveals real-space details of the sample microstructure, X-ray scattering data for each gauge volume provided statistical nanoscale and ultrastructural polycrystal reciprocal-space information such as phase and preferred orientation (texture). Careful registration of the gauge volume positions recorded during the scans allowed direct covisualization of the data from two modalities. Diffraction gauge volumes were identified and visualized within the tomographic data sets, revealing the underlying local information to support the interpretation of the diffraction patterns. The present implementation of the 4D microscopy paradigm allowed following the progression of demineralization and its correlation with time-dependent WAXS pattern evolution in an approach that is transferable to other material systems.
|
Mar 2024
|
|
DIAD-Dual Imaging and Diffraction Beamline
|
Abstract: Purpose / Aim: Dentine hypersensitivity (DH) is a commonly occurring dental condition where sharp pain derived from exposed dentine in response to stimuli that cannot be ascribed to any other dental diseases. It is highly prevalent affecting up to 69% of the UK population and has a significant impact on the quality of life. Bioactive glasses that degrade in oral environment and form apatite are thought to be beneficial in occluding the exposed open dentine tubules and have been introduced to toothpastes, e.g. Novamin® (45S5 Bioglass) for Sensodyne by GSK, fluoride containing bioactive glass for BioMin® F by BioMin Technologies Ltd. Post-mortem characterisations evidenced tubule occlusion (Fig.1) but failed in providing dynamic history. Therefore, this study aimed to monitor dentine tubule occlusion with bioactive glasses using an operando time-lapse X-ray diffraction tomography experiment. Materials & Methods: Disinfected Teeth (collected under REC reference 16/SW/0220) were sectioned mesio-distally into discs approximately 500 μm thick using a precision diamond saw, polished down to 300 μm manually. Matchstick specimens (5 mm length x 3 mm width) prepared were brushed for 2 mins with bioactive glasses pastes, housed in a modified Eppendorf tube and positioned on the tomography stage of the Dual Imaging and Diffraction (DIAD) beamline at Diamond Light Source (UK’s national synchrotron). A baseline X-ray tomography (pink beam, 0-180°, detector exposure of 0.01 and 5,000 projections) and X-ray diffraction mapping (matrix scan with 10x10 points, 20 s exposure) were collected before artificial saliva was introduced. Time-lapse X-ray tomography and X-ray diffraction mapping using the same parameters as baseline scan were carried out consecutively for 8 h allowing the visualisation of tubule occlusion and changes of mineral density as well as monitor the phase evolution from glass to apatite. Artificial saliva was manually replenished. Monochromatic beam with an energy of 20 keV was used and calibrations were performed. Results: The collected tomography data allow visualisation of dentine tubule occlusion showing improved occlusion with time. 2D XRD data provide qualitative and quantitative information relates to glass dissolution and apatite formation as a function of time. Conclusions: The Dual Imaging and Diffraction (DIAD) beamline correlates X-ray tomography and X-ray diffraction mapping offers the opportunity to study dentine occlusion by bioactive glasses in a time evolving manner that is not available via other techniques. Although in vitro but clinically relevant. The results will potentially provide a guidance for optimising and designing products for dentine tubule occlusion/treating dentine hypersensitivity – one of the most prevalent global diseases with healthy ageing.
|
Oct 2023
|
|
DIAD-Dual Imaging and Diffraction Beamline
|
Open Access
Abstract: Transport in porous media plays an essential role for many physical, engineering, biological and environmental processes. Novel synchrotron imaging techniques and image-based models have enabled more robust quantification of geometric structures that influence transport through the pore space. However, image-based modelling is computationally expensive, and end users often require, while conducting imaging campaign, fast and agile bulk-scale effective parameter estimates that account for the pore-scale details. In this manuscript we enhance a pre-existing image-based model solver known as OpenImpala to estimate bulk-scale effective transport parameters. In particular, the boundary conditions and equations in OpenImpala were modified in order to estimate the effective diffusivity in an imaged system/geometry via a formal multi-scale homogenisation expansion. Estimates of effective pore space diffusivity were generated for a range of elementary volume sizes to estimate when the effective diffusivity values begin to converge to a single value. Results from OpenImpala were validated against a commercial finite element method package COMSOL Multiphysics (abbreviated as COMSOL). Results showed that the effective diffusivity values determined with OpenImpala were similar to those estimated by COMSOL. Tests on larger domains comparing a full image-based model to a homogenised (geometrically uniform) domain that used the effective diffusivity parameters showed differences below 2 % error, thus verifying the accuracy of the effective diffusivity estimates. Finally, we compared OpenImpala’s parallel computing speeds to COMSOL. OpenImpala consistently ran simulations within fractions of minutes, which was two orders of magnitude faster than COMSOL providing identical supercomputing specifications. In conclusion, we demonstrated OpenImpala’s utility as part of an on-site tomography processing pipeline allowing for fast and agile assessment of porous media processes and to guide imaging campaigns while they are happening at synchrotron beamlines.
|
Jul 2023
|
|