DL-SAXS-Offline SAXS and Sample Environment Development
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[28661, 29137, 27721]
Open Access
Abstract: In situ small-angle X-ray scattering (SAXS) is a powerful technique for characterizing block-copolymer nano-object formation during polymerization-induced self-assembly. To work effectively in situ, it requires high intensity X-rays which enable the short acquisition times required for real-time measurements. However, routine access to synchrotron X-ray sources is expensive and highly competitive. Flow reactors provide an opportunity to obtain temporal resolution by operating at a consistent flow rate. Here, we equip a flow-reactor with an X-ray transparent flow-cell at the outlet which facilitates the use of a low-flux laboratory SAXS instrument for in situ monitoring. The formation and morphological evolution of spherical block copolymer nano-objects was characterized during reversible addition fragmentation chain transfer polymerization of diacetone acrylamide in the presence of a series of poly(dimethylacrylamide) (PDMAm) macromolecular chain transfer agents with varying degrees of polymerization. SAXS analysis indicated that during the polymerization, highly solvated, loosely defined aggregates form after approximately 100 s, followed by expulsion of solvent to form well-defined spherical particles with PDAAm cores and PDMAm stabilizer chains, which then grow as the polymerization proceeds. Analysis also indicates that the aggregation number (Nagg) increases during the reaction, likely due to collisions between swollen, growing nanoparticles. In situ SAXS conducted on PISA syntheses using different PDMAm DPs indicated a varying conformation of the chains in the particle cores, from collapsed chains for PDMAm47 to extended chains for PDMAm143. At high conversion, the final Nagg decreased as a function of increasing PDMAm DP, indicating increased steric stabilization afforded by the longer chains which is reflected by a decrease in both core diameter (from SAXS) and hydrodynamic diameter (from DLS) for a constant core DP of 400.
|
Aug 2023
|
|
DL-SAXS-Offline SAXS and Sample Environment Development
|
Diamond Proposal Number(s):
[32344]
Open Access
Abstract: The power conversion efficiencies (PCEs) of organic solar cells (OSCs) have risen dramatically since the introduction of the “Y-series” of non-fullerene acceptors. However, the demonstration of rapid scalable deposition techniques to deposit such systems is rare. Here, for the first time, we demonstrate the deposition of a Y-series-based system using ultrasonic spray coating─a technique with the potential for significantly faster deposition speeds than most traditional meniscus-based methods. Through the use of an air-knife to rapidly remove the casting solvent, we can overcome film reticulation, allowing the drying dynamics to be controlled without the use of solvent additives, heating the substrate, or heating the casting solution. The air-knife also facilitates the use of a non-halogenated, low-toxicity solvent, resulting in industrially relevant, spray-coated PM6:DTY6 devices with PCEs of up to 14.1%. We also highlight the obstacles for scalable coating of Y-series-based solar cells, in particular the influence of slower drying times on blend morphology and crystallinity. This work demonstrates the compatibility of ultrasonic spray coating, and use of an air-knife, with high-speed, roll-to-roll OSC manufacturing techniques.
|
Jul 2023
|
|
DL-SAXS-Offline SAXS and Sample Environment Development
|
Diamond Proposal Number(s):
[2617]
Abstract: Utilizing carbon dioxide (CO2) to make polycarbonates through the ring-opening copolymerization (ROCOP) of CO2 and epoxides valorizes and recycles CO2 and reduces pollution in polymer manufacturing. Recent developments in catalysis provide access to polycarbonates with well-defined structures and allow for copolymerization with biomass-derived monomers; however, the resulting material properties are under-investigated. Here, new types of CO2-derived thermoplastic elastomers (TPEs) are described together with a generally applicable method to augment tensile mechanical strength and Young's modulus without requiring material re-design. These TPEs combine high glass transition temperature (Tg) amorphous blocks comprising CO2-derived poly(carbonates) (A-block), with low Tg poly(ε-decalactone), from castor oil, (B-block) in ABA structures. The poly(carbonate) blocks are selectively functionalized with metal-carboxylates, where the metals are Na(I), Mg(II), Ca(II), Zn(II) and Al(III). The colorless polymers, featuring <1 wt% metal, show tunable thermal (Tg), and mechanical (elongation at break, elasticity, creep-resistance) properties. The best elastomers show >50-fold higher Young's modulus and 21-times greater tensile strength, without compromise to elastic recovery, compared with the starting block polymers. They have wide operating temperatures (-20 to 200 ˚C), high creep-resistance and yet remain recyclable. In future, these materials could substitute high-volume petrochemical elastomers and be utilized in high-growth fields like medicine, robotics and electronics.
|
May 2023
|
|
B21-High Throughput SAXS
DL-SAXS-Offline SAXS and Sample Environment Development
|
Diamond Proposal Number(s):
[27756, 29720]
Open Access
Abstract: Atherosclerosis is often described as a single disease entity; however, the morphology of each plaque is unique to the individual. The field currently lacks a technique that can discriminate stable from unstable plaques, to identify those at risk of a thromboembolic event. Small- and wide-angle X-ray scattering (SAXS/WAXS) holds the potential to be able to identify key materials present in a plaque, such as cholesterol species, collagen, low-density lipoproteins (LDLs), and hydroxyapatite. Protocols have been established for the preparation of excised human atherosclerotic tissue that are investigated herein. This includes the fixing, sectioning, and substrate selection of the sample. Through several sample preparation methods, vast improvements have been made to sample-to-noise ratio and background subtraction.
|
Apr 2023
|
|
DL-SAXS-Offline SAXS and Sample Environment Development
|
Open Access
Abstract: High-strength Al–Zn–Mg–Cu alloys such as AA7075 rely on precipitation to obtain their properties, and the evolution of these precipitates can be strongly influenced by deformation. In this study, the effect of warm stretching on precipitation in supersaturated AA7075 was investigated. A dilatometer was used to enable rapid quenching directly from the solution treatment temperature to the warm stretching temperature. The evolution of precipitates was monitored using small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). SAXS revealed the presence of clusters only 5 seconds after quenching, and the subsequent evolution of the microstructure involved the growth and coarsening of these clusters. Deformation strongly enhanced the cluster/precipitate growth rate, which increased linearly with increasing strain. A strain rate effect was also noted, with the growth rate being faster at the higher strain rate for the same strain level. However, the acceleration of growth with increasing strain rate was not sufficient to compensate for the reduced time, so that deformation at higher strain rate led to small precipitates (at iso-strain). TEM revealed the precipitates to be homogeneously dispersed in the matrix both with and without deformation. There was no evidence for enhanced nucleation due to deformation, indeed the opposite was the case, with fewer but larger precipitates observed in the deformed microstructure. The linear increase in growth rate with strain is consistent with a dominant effect of excess vacancies in enhancing diffusion rates.
|
Feb 2023
|
|
DL-SAXS-Offline SAXS and Sample Environment Development
|
Diamond Proposal Number(s):
[29797]
Open Access
Abstract: In the present study, gels based on xanthan gum and poloxamer 407 have been developed and characterized in order to convey natural antioxidant molecules included in niosomes. Specifically, the studies were conducted to evaluate how the vesicular systems affect the release of the active ingredient and which formulation is most suitable for cutaneous application. Niosomes, composed of Span 20 or Tween 20, were produced through the direct hydration method, and therefore, borate buffer or a micellar solution of poloxamer 188 was used as the aqueous phase. The niosomes were firstly characterized in terms of morphology, dimensional and encapsulation stability. Afterwards, gels based on poloxamer 407 or xanthan gum were compared in terms of spreadability and adhesiveness. It was found to have greater spreadability for gels based on poloxamer 407 and 100% adhesiveness for those based on xanthan gum. The in vitro diffusion of drugs studied using Franz cells associated with membranes of mixed cellulose esters showed that the use of a poloxamer micellar hydration phase determined a lower release as well as the use of Span 20. The thickened niosomes ensured controlled diffusion of the antioxidant molecules. Lastly, the in vivo irritation test confirmed the safeness of niosomal gels after cutaneous application.
|
Jan 2023
|
|
DL-SAXS-Offline SAXS and Sample Environment Development
|
Diamond Proposal Number(s):
[29810]
Open Access
Abstract: Polymers designed with a specific combination of electrochemical, mechanical, and chemical properties could help overcome challenges limiting practical all-solid-state batteries for high-performance next-generation energy storage devices. In composite cathodes, comprising active cathode material, inorganic solid electrolyte, and carbon, battery longevity is limited by active particle volume changes occurring on charge/discharge. To overcome this, impractical high pressures are applied to maintain interfacial contact. Herein, block polymers designed to address these issues combine ionic conductivity, electrochemical stability, and suitable elastomeric mechanical properties, including adhesion. The block polymers have “hard-soft-hard”, ABA, block structures, where the soft “B” block is poly(ethylene oxide) (PEO), known to promote ionic conductivity, and the hard “A” block is a CO2-derived polycarbonate, poly(4-vinyl cyclohexene oxide carbonate), which provides mechanical rigidity and enhances oxidative stability. ABA block polymers featuring controllable PEO and polycarbonate lengths are straightforwardly prepared using hydroxyl telechelic PEO as a macroinitiator for CO2/epoxide ring-opening copolymerization and a well-controlled Mg(II)Co(II) catalyst. The influence of block polymer composition upon electrochemical and mechanical properties is investigated, with phosphonic acid functionalities being installed in the polycarbonate domains for adhesive properties. Three lead polymer materials are identified; these materials show an ambient ionic conductivity of 10 –4 S cm–1, lithium-ion transport (tLi+ 0.3–0.62), oxidative stability (>4 V vs Li+/Li), and elastomeric or plastomer properties (G′ 0.1–67 MPa). The best block polymers are used in composite cathodes with LiNi0.8Mn0.1Co0.1O2 active material and Li6PS5Cl solid electrolyte–the resulting solid-state batteries demonstrate greater capacity retention than equivalent cells featuring no polymer or commercial polyelectrolytes.
|
Sep 2022
|
|
DL-SAXS-Offline SAXS and Sample Environment Development
|
Diamond Proposal Number(s):
[29590]
Abstract: Milk fat has more than 200 triacylglycerols (TAGs), which play a pivotal role in its crystallization behavior. Asymmetrical TAGs containing short butyryl chains contribute to a significant portion of milk fat TAGs. This work aims to elucidate the crystallization behavior of asymmetrical milk fat TAGs by employing the pure compound of 1-butyryl 2-stearoyl 3-palmitoyl-glycerol (BuSP). The structural evolution of BuSP after being cooled down to 20 °C from the melt is evaluated by small- and wide-angle X-ray scattering (SAXS and WAXS) and differential scanning calorimetry (DSC). The temporal structural observation shows that BuSP crystallizes into the α-form with short and long spacings of 4.10 and 56.9 Å, respectively, during the first hour of isothermal hold at 20 °C. The polymorphic transformation of the α to β′ phase occurred after 4 h of isothermal hold, and the β′- to α-form fraction ratio was about 70:30 at the end of the isothermal experiment (18 h). Pure β′-form X-ray patterns are obtained from the BuSP powder with short spacings of 4.33, 4.14, and 3.80 Å, while the long spacing of 51.2 Å depicts a three-chain-length lamellar structure with a tilt angle of 32°. Corresponding DSC measurements display that BuSP crystallizes from the melt at 29.1 °C, whereas the melting of α- and β′-forms was recorded at 30.3 and 47.8 °C, respectively. In the absence of the β-form, the β′-polymorph is the most stable observed form in BuSP. This work exemplarily explains the crystallization behavior of asymmetrical milk fat TAGs and thus provides new insights into their role in overall milk fat crystallization.
|
Sep 2022
|
|
DL-SAXS-Offline SAXS and Sample Environment Development
|
Diamond Proposal Number(s):
[29810]
Open Access
Abstract: Thermoplastic elastomers based on polyesters and polycarbonates could maximize recyclability, degradability and renewable resource use. However, they often underperform and suffer from the familiar trade-off between strength and extensibility. Here, we report well-defined reprocessable poly(ester- b -carbonate- b -ester) elastomers with impressive tensile strengths (60 MPa), elasticity (>800%) and recovery (95%). All the ester/carbonate linkages are fully degradable and enable chemical recycling. The superior performances are attributed to three features: (1) Highly entangled poly(trimethylene carbonate) soft segments; (2) fully reversible strain-induced crystallization and (3) precision placed Zn(II)-carboxylates dynamically crosslinking the hard polyester domains. The one-pot polymer synthesis couples controlled trimethylene carbonate ring-opening polymerization and alternating epoxide/anhydride ring-opening copolymerization.Conversion to ionomers is achieved by reacting vinyl-substituted epoxides (4-vinyl-cyclohexene oxide and limonene oxide) with phthalic anhydride. This protocol should extend to other cyclic monomers, CO 2 and non-covalent interactions, opening-up opportunities for polymer performance and sustainability.
|
Sep 2022
|
|
DL-SAXS-Offline SAXS and Sample Environment Development
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[16566, 26258, 28627]
Open Access
Abstract: Delivery of chemotherapy drugs specifically to cancer cells raises local drug doses in tumors and therefore kills more cancer cells while reducing side effects in other tissues, thereby improving oncological and quality of life outcomes. Cubosomes, liquid crystalline lipid nanoparticles, are potential vehicles for delivery of chemotherapy drugs, presenting the advantages of biocompatibility, stable encapsulation, and high drug loading of hydrophobic or hydrophilic drugs. However, active targeting of drug-loaded cubosomes to cancer cells, as opposed to passive accumulation, remains relatively underexplored. We formulated and characterized cubosomes loaded with potential cancer drug copper acetylacetonate and functionalized their surfaces using click chemistry coupling with hyaluronic acid (HA), the ligand for the cell surface receptor CD44. CD44 is overexpressed in many cancer types including breast and colorectal. HA-tagged, copper-acetylacetonate-loaded cubosomes have an average hydrodynamic diameter of 152 nm, with an internal nanostructure based on the space group Im3m. These cubosomes were efficiently taken up by two CD44-expressing cancer cell lines (MDA-MB-231 and HT29, representing breast and colon cancer) but not by two CD44-negative cell lines (MCF-7 breast cancer and HEK-293 kidney cells). HA-tagged cubosomes caused significantly more cell death than untargeted cubosomes in the CD44-positive cells, demonstrating the value of the targeting. CD44-negative cells were equally relatively resistant to both, demonstrating the specificity of the targeting. Cell death was characterized as apoptotic. Specific targeting and cell death were evident in both 2D culture and 3D spheroids. We conclude that HA-tagged, copper-acetylacetonate-loaded cubosomes show great potential as an effective therapeutic for selective targeting of CD44-expressing tumors.
|
Aug 2022
|
|