I15-1-X-ray Pair Distribution Function (XPDF)
|
Louis
Longley
,
Courtney
Calahoo
,
René
Limbach
,
Yang
Xia
,
Joshua M.
Tuffnell
,
Adam F.
Sapnik
,
Michael F.
Thorne
,
Dean S.
Keeble
,
David A.
Keen
,
Lothar
Wondraczek
,
Thomas D.
Bennett
Diamond Proposal Number(s):
[20038]
Open Access
Abstract: Metal-organic framework (MOF) glasses have become a subject of interest as a distinct category of melt quenched glass, and have potential applications in areas such as ion transport and sensing. In this paper we show how MOF glasses can be combined with inorganic glasses in order to fabricate a new family of materials composed of both MOF and inorganic glass domains. We use an array of experimental techniques to propose the bonding between inorganic and MOF domains, and show that the composites produced are more mechanically pliant than the inorganic glass itself.
|
Nov 2020
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Diamond Proposal Number(s):
[18638, 23164]
Open Access
Abstract: Biogenic and synthetic hydroxyapatites are confounding materials whose properties remain uncertain, even after years of study. Pair distribution function (PDF) analysis was applied to hydroxyapatites in the 1970’s and 1980’s, but this area of research has not taken full advantage of the relatively recent advances in synchrotron facilities. Here, synchrotron X-ray PDF analysis is compared to techniques commonly used to characterise hydroxyapatite (such as wide angle X-ray scattering, Fourier-transform infrared spectroscopy and thermogravimetric analysis) for a range of biogenic and synthetic hydroxyapatites with a wide range of carbonate substitution. Contributions to the pair distribution function from collagen, carbonate and finite crystallite size were examined through principal component analysis and comparison of PDFs. Noticeable contributions from collagen were observed in biogenic PDFs when compared to synthetic PDFs (namely r < 15 Å), consistent with simulated PDFs of collagen structures. Additionally, changes in local structure were observed for PDFs of synthetic hydroxyapatites with differing carbonate content, notably in features near 4 Å, 8 Å and 19 Å. Regression models were generated to predict carbonate substitution from peak position within the PDFs.
|
Nov 2020
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Diamond Proposal Number(s):
[16372]
Open Access
Abstract: The exact formation mechanism of tantalum oxides (and in general, metal/mixed metal oxides) from alkoxide precursors is still not fully understood, particularly when forming cluster-like or amorphous materials. The structural evolution of Ta-based oxides was studied in detail using X-ray total scattering experiments along with subsequent pair distribution function (PDF) analyses. Starting from a tantalum alkoxide precursor (Ta2(OEt)10), the formation of hydrolysed TaxOyHz clusters in highly diluted aqueous solution was analysed. From the PDF data, the connectivity and arrangement of TaxOy octahedra in the cluster could be deduced as well as the approximate size of the clusters (<1 nm). Construction of cluster models allowed for identification of common structural motifs in the TaxOyHz clusters, ruling out the formation of chain- or ring-like clusters. More likely, bulky clusters with a high number of corner-sharing octahedra are formed. After separation of the amorphous solid from the liquid, temperature-induced crystallisation processes were monitored via in situ total scattering experiments. Between room temperature and 600 °C, only small rearrangements of the amorphous structure are observed. At about 610 °C, amorphous TaxOyHz transforms directly into crystalline orthorhombic L-Ta2O5 without formation of any crystalline intermediate structures.
|
Nov 2020
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Abstract: The La1+xAE1–xGa3O7+x/2 melilite family (AE = Ca, Sr, and Ba and 0 ≤ x ≤ 0.64) demonstrates remarkable oxide ion conductivity due to the ability of its layered tetrahedral [Ga3O7+x/2] network to accommodate and transport interstitial oxide ions (Oint). Compositions of x > 0.65 with very high Oint concentrations (referred to here as “super-excess” compositions) have the potential to support correspondingly high ionic conductivities but have never before been accessed due to the limitations of conventional solid-state ceramic synthesis. Here, we report that fully substituted La2Ga3O7.5 (x = 1) melilite ceramics can be synthesized by direct crystallization of an under-cooled melt, demonstrating that super-excess compositions are accessible under suitable nonequilibrium reaction conditions. La2Ga3O7.5 is stable up to 830 °C and exhibits an ionic conductivity of 0.01 S·cm–1 at 800 °C, 3 orders of magnitude higher than the corresponding x = 0 end-member LaSrGa3O7 and close to the range exhibited by the current best-in-class La1.54Sr0.46Ga3O7.23 (0.1 S·cm–1). It crystallizes in an orthorhombic √2a × √2a × 2c expansion of the parent melilite cell in the space group Ima2 with full long-range ordering of Oint into chains within the [Ga3O7.5] layers. The emergence of this chain-like (1D) ordering within the 2D melilite framework, which appears to be an incipient feature of previously reported partially ordered melilites, is explained in terms of the underlying hexagonal topology of the structure. These results will enable the exploration of extended compositional ranges for the development of new solid oxide ion electrolytes with high concentrations of interstitial oxide charge carriers.
|
Oct 2020
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Diamond Proposal Number(s):
[21467, 22209]
Open Access
Abstract: Tetrel (Tt = Si, Ge, and Sn) clathrates have highly tunable host–guest structures and have been investigated as novel electrode materials for Li-ion batteries. However, there is little understanding of how the clathrate structure affects the lithiation processes and phase evolution. Herein, the electrochemical lithiation pathway of type I clathrate Ba8Ge43 is investigated with synchrotron X-ray diffraction (XRD) and pair distribution function (PDF) analyses and compared to the lithiation of germanium with a diamond cubic structure (α-Ge). The results confirm previous laboratory XRD studies showing that Ba8Ge43 goes through a solely amorphous phase transformation, which contrasts with the crystalline phase transformations that take place during lithiation of micrometer-sized α-Ge particles. The local structure of framework-substituted clathrate Ba8Al16Ge30 after lithiation is found to proceed through an amorphous phase transformation similar to that in Ba8Ge43. In situ PDF and XRD during heating show that the amorphous phases derived from lithiation of Ba8Ge43 are structurally related to various Li–Ge phases and crystallize at low temperatures (350–420 K). We conclude that the Ba atoms inside the clathrate structure act to break up the long-range ordering of Li–Ge clusters and kinetically prevent the nucleation and growth of bulk crystalline phases. The amorphous phase evolution of the clathrate structure during lithiation results in electrochemical properties distinct from those in α-Ge, such as a single-phase reaction mechanism and lower voltage, suggesting possible advantages of clathrates over elemental phases for use as anodes in Li-ion batteries.
|
Oct 2020
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Abstract: The central theme of this thesis is the application of radial and pair distribution function analysis to materials characterisation problems for nanotechnology. These concepts are introduced in Chapter 1, and the associated methods are described in Chapter 2. Chapter 3 details the first of the results which discusses the design and development of a software tool called ImageDataExtractor. This auto-extracts microscopy images and then analyses them to afford quantitative information regarding particles in a sample, such as shape, size and distribution. It realises an opportunity for data-mining the ubiquity of readily available images in the literature. Chapter 4 presents results of the development and execution of a novel experimental technique, called glancing-angle pair distribution function (gaPDF) analysis, applied to the structure of the working electrode in dye-sensitised solar cells (DSSCs). This structure was successfully observed, validating this novel method. The investigation also suggested preferred binding modes of the carboxylic acid anchoring groups present in this interfacial structure. Chapters 5 and 6 demonstrate the application of PDF analysis to synchrotron-based powder diffraction data of two material case studies: the rare earth phosphate glass (REPG) (Gd2O3)0.230(P2O5)0.770, and four Ru based photo-isomers. The closest R…R rare earth separation, which governs optical properties of REPGs, was determined to be 4.2(1) Å, aided by various statistical techniques. Analysis on four Ru-based photo-isomers confirmed: the existence of local structure in such compounds, their ability to be photo-isomerised in powder form, the theoretical models constructed using computational techniques, and the lack of heterogeneity in photo-isomerisation throughout a given light-induced sample. Chapter 7 concludes the work and offers a future outlook.
|
Oct 2020
|
|
E02-JEM ARM 300CF
I15-1-X-ray Pair Distribution Function (XPDF)
|
Shichun
Li
,
Shuwen
Yu
,
Sean M.
Collins
,
Duncan N.
Johnstone
,
Christopher W.
Ashling
,
Adam F.
Sapnik
,
Philip A.
Chater
,
Dean S.
Keeble
,
Lauren N.
Mchugh
,
Paul A.
Midgley
,
David A.
Keen
,
Thomas D.
Bennett
Diamond Proposal Number(s):
[20038, 22632, 21979]
Open Access
Abstract: Metal–organic framework crystal–glass composite (MOF CGC) materials consist of a crystalline MOF embedded within a MOF–glass matrix. In this work, a new synthetic route to these materials is demonstrated through the preparation of two ZIF-62 glass-based CGCs, one with crystalline ZIF-67 and the other with crystalline UiO-66. Previous attempts to form these CGCs failed due to the high processing temperatures involved in heating above the melting point of ZIF-62. Annealing of the ZIF-62 glass above the glass transition with each MOF however leads to stable CGC formation at lower temperatures. The reduction in processing temperatures will enable the formation of a greatly expanded range of MOF CGCs.
|
Sep 2020
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Diamond Proposal Number(s):
[20893, 20094]
Open Access
Abstract: In situ electrochemical cycling combined with total scattering measurements can provide valuable structural information on crystalline, semi-crystalline and amorphous phases present during (dis)charging of batteries. In situ measurements are particularly challenging for total scattering experiments due to the requirement for low, constant and reproducible backgrounds. Poor cell design can introduce artefacts into the total scattering data or cause inhomogeneous electrochemical cycling, leading to poor data quality or misleading results. This work presents a new cell design optimized to provide good electrochemical performance while performing bulk multi-scale characterizations based on total scattering and pair distribution function methods, and with potential for techniques such as X-ray Raman spectroscopy. As an example, the structural changes of a nanostructured high-capacity cathode with a disordered rock-salt structure and composition Li4Mn2O5 are demonstrated. The results show that there is no contribution to the recorded signal from other cell components, and a very low and consistent contribution from the cell background.
|
Sep 2020
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Diamond Proposal Number(s):
[22774]
Abstract: To understand the importance of the crystallite size on the stabilization of metastable tetragonal ZrO2, ultra-fine ZrO2 nanocrystallites were synthesized via: (i) the precipitation method in supercritical water using nitrate precursors, (ii) the sol-gel method in a supercritical ethanol-water mixture and (iii) the borderline non-hydrolytic sol-gel route in supercritical ethanol using propoxide precursors. The obtained nanocrystals displayed a variation of the monoclinic versus tetragonal molar frac-tions from 100 wt. % down to ≈ 10 wt. % of monoclinic. This variation was concomitant with an overall size decrease of the nanocrystals, ranging from 7 to 2 nm depending on the synthesis procedures. Phase contents were quantified by refinement analysis of X-ray scattering datasets, and crosschecked with Raman spectroscopy. Our results suggest that an upper limit of ≈ 90 wt. %, of tetragonal ZrO2 phase is possible, even for ultra-fine nanoparticles (2 nm). These findings thus question the exist-ence of any critical size limit below which stabilization of pure t-ZrO2 is attainable at low temperatures.
|
Sep 2020
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Diamond Proposal Number(s):
[2257]
Open Access
Abstract: The use of silica as a lithium‐ion battery anode material requires a pretreatment step to induce electrochemical activity. The partially reversible electrochemical reduction reaction between silica and lithium has been postulated to produce silicon, which can subsequently reversibly react with lithium, providing stable capacities higher than graphite materials. Up to now, the electrochemical reduction pathway and the nature of the products were unknown, thereby hampering the design, optimization, and wider uptake of silica‐based anodes. Here, the electrochemical reduction pathway is uncovered and, for the first time, elemental silicon is identified as a reduction product. These insights, gleaned from analysis of the current response and capacity increase during reduction, conclusively demonstrated that silica must be reduced to introduce reversible capacity and the highest capacities of 600 mAh g−1 are achieved by using a constant load discharge at elevated temperature. Characterization via total scattering X‐ray pair distribution function analysis reveal the reduction products are amorphous in nature, highlighting the need for local structural methods to uncover vital information often inaccessible by traditional diffraction. These insights contribute toward understanding the electrochemical reduction of silica and can inform the development of pretreatment processes to enable their incorporation into next‐generation lithium‐ion batteries.
|
Sep 2020
|
|