I15-1-X-ray Pair Distribution Function (XPDF)
|
Diamond Proposal Number(s):
[40520, 38927]
Open Access
Abstract: We employ a combined computational and experimental approach to systematically assess the hydrostatic properties of methanol–ethanol (MeOH–EtOH) mixtures of varying compositions, with the aim of evaluating their suitability as pressure-transmitting mediums (PTMs). PTMs are essential for enabling the characterization of materials properties at high pressure, perhaps most prominently in the context of diffraction measurements, to provide uniform compression and avoid strain on the sample. Molecular dynamics (MD) simulations indicate that the hydrostatic limit and several structural and dynamic properties of the widely used 4:1 MeOH–EtOH volume ratio do not exhibit any significant deviations from the monotonic trends observed as a function of MeOH content within the mixture. These findings are in agreement with X-ray pair distribution function measurements, which show no peculiar structural behaviour for the 4:1 composition. Experimental measurements of the hydrostatic limit confirm this result and demonstrate that, as previously reported, the role of ethanol is primarily to delay MeOH crystallization. However, we find that the same role can be fulfilled by other small molecules, such as propan-2-ol. Additional simulations of several MeOH–X binary mixtures suggest that these results might hold for a variety of similar mixtures. Thus, our findings indicate that the 4:1 ratio is neither peculiar nor optimal in terms of PTM performance; instead, its popularity seems to be mostly due to the influence of previous literature. Indeed, we find that the 9:1 MeOH–EtOH mixture is characterized by a hydrostatic limit which is superior (by nearly 1 GPa) to that observed for the 4:1 ratio. These findings offer a promising alternative PTM composition which is readily available, and pave the way towards future work aimed at the rational design of novel PTMs.
|
Dec 2025
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Diamond Proposal Number(s):
[34380]
Open Access
Abstract: The structural evolution and electrical behaviour of (1−x) NaNbO3-xCaTiO3 (NN-CT) ceramics were investigated in this study. X-ray diffraction and full-pattern Rietveld refinement confirm that CT incorporation disrupts the long-range antipolar orthorhombic Pbcm phase. The dielectric permittivity peak shifts to lower temperatures as the CT concentration increases. The highest permittivity of 2365 was obtained for x = 0.15 at room temperature. Synchrotron X-ray scattering coupled with pair distribution function (PDF) analysis reveals the existence of a short-range ordered polar orthorhombic P21ma (Q) phase with a correlation length of approximately 5 nm. A slim ferroelectric polarisation-electric field (P-E) loop, consistent with short-range ordered behaviour, was obtained in the NN-0.15CT, yielding an enhanced recoverable energy density by over 300 % at 150 kV cm−1 compared to pure NN. These findings establish the role of CT doping in modifying structural and dielectric properties, contributing to the understanding of crystal symmetry evolution and its impact on the dielectric response of this promising, environmentally friendly lead-free perovskite oxide for high-performance dielectric applications.
|
Oct 2025
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Zixuan
Li
,
Rui
Qi
,
Yi
Yuan
,
Lechen
Yang
,
Lijiang
Song
,
Ashok S.
Menon
,
Louis F. J.
Piper
,
Didier
Wermeille
,
Paul
Thompson
,
Robert A.
House
,
Peter G.
Bruce
,
Alex W.
Robertson
Open Access
Abstract: Aqueous zinc-ion batteries (ZIBs) suffer from sustained capacity loss at the zinc metal anode due to side reactions with the electrolyte, even under idle conditions. The concept of an anode-free ZIB would address this degradation by eliminating the metal anode source. A key requirement for such systems is a cathode that contains zinc in its pristine state and supports initial charging. Here, we report the synthesis and characterization of cation-disordered rocksalt (DRX) ZnMnO2, a new cathode material suitable for anode-free ZIBs. ZnMnO2 meets the essential criteria for anode-free operation of natively containing Zn in the pristine state, enabling an initial charge, as well as offering high initial charge capacity (312.8 mAh g−1), and discharge voltage (1.36 V). We show that the dominant energy storage mechanism involves Mn dissolution and redeposition, with a smaller contribution arising from reversible Zn intercalation into a spinel phase that forms in situ during cycling. We further demonstrate the versatility of DRX cathodes by extending the concept to ZnFeO2. These findings establish DRX materials as a promising platform for the development of cathodes suitable for anode-free ZIBs.
|
Oct 2025
|
|
B07-B1-Versatile Soft X-ray beamline: High Throughput ES1
I15-1-X-ray Pair Distribution Function (XPDF)
|
Daniel
Muñoz-Gil
,
Celia
Castillo-Blas
,
Dawid Krystian
Feler
,
Isabel
Gómez-Recio
,
Miguel
Tinoco
,
Ana
Querejeta-Fernández
,
Rodrigo
González-Prieto
,
Felipe
Gandara
,
Romualdo
Santos Silva
,
Pilar
Ferrer
,
Carlos
Prieto
,
Luc
Lajaunie
,
José Luis
Martinez-Peña
,
María Luisa
Ruiz-González
,
María Luisa
Ruiz-González
,
José María
González-Calbet
Diamond Proposal Number(s):
[40307, 40403]
Open Access
Abstract: Layered double hydroxides (LDH) based on transition metals are highly flexible in tailoring their dimensionality, lattice, and electronic structures, making them promising candidates as multifunctional 2D materials for the development of clean energy technologies and boosting the use of hydrogen as an energy vector. In this paper, strategic anion substitution in cobalt LDH is an appealing strategy to produce a material with two-fold functionality, electrochemical and magnetocaloric response, offering a sustainable alternative to existing electrocatalysts and cryogenic refrigerants. It is unambiguously demonstrated that (poly)oxomolybdate-based specimens interleave in Co LDH nanosheets up to a Co:Mo = 1:0.4 ratio, leading to an interstratified material. This intercalation greatly benefits the kinetics of the oxygen evolution reaction for H2 production, boosting the catalytic sites due to the expansion of the interlayer space, induced by the bulky molybdates which also partially modify the Co oxidation state of αCo(OH)2 nanolayers, favoring charge transfer. In parallel, the interleaved Mo species strengthen superexchange interactions compared with pristine α-Co(OH)2, effectively adjusting the operating temperature toward the liquid hydrogen range (2030 K). This specific temperature range allows to fill a critical gap in magnetocaloric materials, as few systems can simultaneously achieve both large magnetic entropy changes and structural stability.
|
Oct 2025
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Adam F.
Sapnik
,
Philip A.
Chater
,
Dean S.
Keeble
,
John S. O.
Evans
,
Federica
Bertolotti
,
Antonietta
Guagliardi
,
Lise J.
Støckler
,
Elodie A.
Harbourne
,
Anders B.
Borup
,
Rebecca S.
Silberg
,
Adrien
Descamps
,
Clemens
Prescher
,
Benjamin D.
Klee
,
Axel
Phelipeau
,
Imran
Ullah
,
Kárel G.
Medina
,
Tobias A.
Bird
,
Viktoria
Kaznelson
,
William
Lynn
,
Andrew L.
Goodwin
,
Bo B.
Iversen
,
Celine
Crepisson
,
Emil S.
Bozin
,
Kirsten M. Ø.
Jensen
,
Emma E.
Mcbride
,
Reinhard B.
Neder
,
Ian
Robinson
,
Justin S.
Wark
,
Michał
Andrzejewski
,
Ulrike
Boesenberg
,
Erik
Brambrink
,
Carolina
Camarda
,
Valerio
Cerantola
,
Sebastian
Goede
,
Hauke
Höppner
,
Oliver S.
Humphries
,
Zuzana
Konopkova
,
Naresh
Kujala
,
Thomas
Michelat
,
Motoaki
Nakatsutsumi
,
Alexander
Pelka
,
Thomas R.
Preston
,
Lisa
Randolph
,
Michael
Roeper
,
Andreas
Schmidt
,
Cornelius
Strohm
,
Minxue
Tang
,
Peter
Talkovski
,
Ulf
Zastrau
,
Karen
Appel
,
David A.
Keen
Diamond Proposal Number(s):
[39017]
Open Access
Abstract: High-quality total scattering data, a key tool for understanding atomic-scale structure in disordered materials, require stable instrumentation and access to high momentum transfers. This is now routine at dedicated synchrotron instrumentation using high-energy X-ray beams, but it is very challenging to measure a total scattering dataset in less than a few microseconds. This limits their effectiveness for capturing structural changes that occur at the much faster timescales of atomic motion. Current X-ray free-electron lasers (XFELs) provide femtosecond-pulsed X-ray beams with maximum energies of ∼24 keV, giving the potential to measure total scattering and the attendant pair distribution functions (PDFs) on femtosecond timescales. We demonstrate that this potential has been realized using the HED scientific instrument at the European XFEL and present normalized total scattering data for 0.35 Å−1 < Q < 16.6 Å−1 and their PDFs from a broad spectrum of materials, including crystalline, nanocrystalline and amorphous solids, liquids and clusters in solution. We analyzed the data using a variety of methods, including Rietveld refinement, small-box PDF refinement, joint reciprocal–real-space refinement, cluster refinement and Debye scattering analysis. The resolution function of the setup is also characterized. We conclusively show that high-quality data can be obtained from a single ∼30 fs XFEL pulse for multiple different sample types. Our efforts not only significantly increase the existing maximum reported Q range for an S(Q) measured at an XFEL but also mean that XFELs are now a viable X-ray source for the broad community of people using reciprocal-space total scattering and PDF methods in their research.
|
Sep 2025
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Ming
Gao
,
Hankun
Xu
,
Kun
Lin
,
Andrea
Sanson
,
Alessandro
Venier
,
Alessandro
Puri
,
Jochi
Tseng
,
Guodong
Li
,
Qian
Zhang
,
Xuyu
Dong
,
Yili
Cao
,
Qiang
Li
,
Xianran
Xing
Diamond Proposal Number(s):
[31899]
Abstract: Negative thermal expansion (NTE) is an unusual yet highly useful phenomenon that has been extensively studied in numerous crystals, including ceramics, alloys, and metal-organic frameworks. This Letter reports an unprecedented NTE in an amorphous Fe87.5Y3Zr1.5B8 alloy that lacks a periodic atomic arrangement. Such an NTE is significant for metallic materials and extends over a wide temperature range (𝛼1=−6.9×10−6 K−1, 200–375 K). We demonstrate that this NTE is intrinsic to the amorphous nature of the alloy and is correlated with Fe moment. Extended x-ray absorption fine structure reveals a strong NTE for nearest neighboring Fe-Fe pairs. Further analysis using a x-ray pair distribution function indicates that the amorphous Fe87.5Y3Zr1.5B8 alloy, serving as a transition state, exhibits a tendency toward local ordered atomic arrangement. A complex interplay among local structure, magnetic interaction, and thermal relaxation results in volume contraction upon heating below 𝑇𝐶. This Letter introduces amorphous alloys as a new family of materials with NTE functionality, offering interesting prospects for both scientific research and practical applications.
|
Sep 2025
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Diamond Proposal Number(s):
[39034]
Open Access
Abstract: Composite co-ionic ceramic electrolytes that combine proton and oxide ion conductors hold potential for co-electrolysis of CO2 and H2O for syngas production due to flexible control of the transport numbers of the two charge carriers. Contrary to purely oxide ion co-electrolysis, co-ionic co-electrolysis embodies the supply of CO2 and H2O separately to the negative and positive electrodes, respectively. This study focuses on the development of a chemically stable co-ionic composite electrolyte of an acceptor-doped Ba(Zr,Ce)O3 proton conducting perovskite phase and an acceptor-doped (Ce,Zr)O2 oxide ion conducting fluorite phase, annealed at temperatures between 800 and 1600 °C. Comprehensive evaluations of the composites' microstructure, hydration, and conductivity were performed, revealing that annealing temperature and cation selection significantly impact the properties and performance of co-ionic electrolytes. Higher annealing temperatures drive cation redistribution, with the perovskite phase becoming zirconium-rich at its B-site and depleted in acceptor dopants, resulting in diminished hydration and protonic conductivity. Herein, we show that composites pairing cerium-rich fluorite phases (e.g., Ce0.8Gd0.2O1.9, CGO20, or Ce0.8Y0.2O1.9, CYO20) display markedly improved performance. The BaCe0.8Y0.2O2.9 (BCY20)–CYO20 system (1[thin space (1/6-em)]:[thin space (1/6-em)]1 weight ratio) achieved the highest conductivity (σ = 0.01 Scm−1 at 650 °C in wet Ar), establishing itself as a promising candidate for co-ionic electrolyte applications in solid oxide electrochemical cells.
|
Sep 2025
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Diamond Proposal Number(s):
[34797]
Open Access
Abstract: MOF@COF composites have emerged as a promising class of engineered materials with unique functionalities, combining the high porosity and tunability of metal-organic frameworks (MOFs) with the chemical and mechanical stability of covalent-organic frameworks (COFs). While their advantageous properties are well-recognized, their structural intricacies and the nature of the interfacial interactions remain insufficiently explored. In this study, a Fe-MOF@COF composite is presented, exhibiting dual functionalities for the efficient removal of organic pollutants from water. The enhanced performance is attributed to the unique properties of the MOF-COF interface, where synergistic interactions between the two porous materials play a critical role. Advanced synchrotron techniques were employed to probe interfacial interactions at the atomic and molecular levels. These findings underscore the potential of Fe-MOF@COF composite as a highly effective material for water remediation, providing deeper insights into their structural behavior and interfacial properties.
|
Aug 2025
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Chumei
Ye
,
Lauren N.
Mchugh
,
Pierre
Florian
,
Ruohan
Yu
,
Celia
Castillo-Blas
,
Celia
Chen
,
Arad
Lang
,
Yuhang
Dai
,
Jingwei
Hou
,
David A.
Keen
,
Sian E.
Dutton
,
Thomas D.
Bennett
Diamond Proposal Number(s):
[35405]
Open Access
Abstract: Hybrid organic-inorganic perovskites (HOIPs) have garnered significant attention for their crystalline properties, yet recent findings reveal that they can also form liquid and glassy phases, offering an alternative platform for understanding non-crystalline materials. In this study, we present a detailed investigation into the structural dynamics of the melting and glass formation process of a two-dimensional (2D) HOIP, (S−(−)−1-(1−naphthyl)ethylammonium)2PbBr4. Compared to its crystalline counterpart, the glass exhibits superior mechanical properties, including higher Young’s modulus and hardness. Our structural studies reveal that the liquid and glass formed from the 2D HOIP exhibit network-forming behaviour, featuring limited short-range order within individual octahedra, partial retention of metal-halide-metal connectivity between neighbouring octahedra, and residual structural correlations mediated by organic cations. We then combine in situ variable-temperature X-ray total scattering experiments, terahertz far-infrared absorption spectroscopy and solid-state nuclear magnetic resonance techniques to study the melting mechanism and the nature of the HOIP liquid obtained. Our results deepen the understanding of the structural evolution and property relationships in HOIP glasses, providing a foundation for their potential applications in advanced phase-change material technologies.
|
Aug 2025
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Diamond Proposal Number(s):
[34748]
Open Access
Abstract: n the quest for greener alternatives to conventional organic solvents, Deep Eutectic Solvents (DESs) have gained significant attention due to their sustainability, biodegradability, and tunability. The use of water as an active and genuine component has recently led to the emergence of water-based DESs (wb-DESs). Here, a careful experimental characterization was performed on choline acetate (ChAc)/water mixtures across a range of water:ChAc molar ratios (n = 2–6). Differential Scanning Calorimetry (DSC) revealed glass transitions between 150 and 180 K, with no first-order transitions, leading to a classification of these mixtures as Low Transition-Temperature Mixtures (LTTMs). Physicochemical measurements, including density, viscosity, electrical conductivity, and refractive index, were conducted over a broad temperature range. NMR analyses provided insights into dynamics and solvation environments, with 1H T1slow relaxation times reaching their lowest value at n = 2, consistent with the formation of a strong hydrogen-bonding network. The n = 2 mixture was further investigated using Small and Wide-Angle X-ray Scattering (S-WAXS) and ab initio molecular dynamics (AIMD). These studies, jointly with 1H NMR choline diffusion coefficient, directly challenge previous claims of the existence of aggregation phenomena in wb-DES. The simulation revealed a well-organized solvation structure, where acetate and water synergistically stabilize the choline cation through a cooperative hydrogen-bonding network. These findings highlight the impact and significance of an integrated physicochemical study in guiding the rational development of new sustainable systems, such as wb-DESs.
|
Aug 2025
|
|