I18-Microfocus Spectroscopy
|
Ian T.
Burke
,
Patrizia
Onnis
,
Alex L.
Riley
,
Catherine J.
Gandy
,
Violeta
Ramos
,
Gavyn K.
Rollinson
,
Patrick
Byrne
,
Richard A.
Crane
,
Karen A.
Hudson-Edwards
,
Elin
Jennings
,
William M.
Mayes
,
J. Frederick W.
Mosselmans
,
Adam P.
Jarvis
Diamond Proposal Number(s):
[29808, 31675]
Open Access
Abstract: The erosion of legacy coastal municipal solid waste landfill sites will result in the dispersion of particulate material into nearby ecosystems with potential for effects on marine populations. Information on the speciation and solid phase associations of metal(loid) contaminants will help to predict contaminant behaviour and better understand ecosystem risks. Here, we investigate the solid phase composition of, and metal(loid) leaching from, fine fraction materials recovered from three actively eroding coastal landfill sites. High concentrations of a range of potentially toxic elements (As, Cd, Cr, Cu, Pb, Ni and Zn) were present in multiple samples, but metal(loid) leaching rates were very low (≪1 wt%) in both deionised water and seawater solutions. Therefore, particulate dispersion is the most likely mode of contaminant transport occurring at these sites. The fine fraction materials were dominated by fine sand sized (63–180 μm) quartz grains and silt sized (<63 μm) matrix components, which were likely to be poorly retained on beaches and easily transported offshore. Four priority contaminants (As, Cu, Pb and Zn) were found to occur primarily in adsorbed or precipitate forms, as either coatings on other particles or as discrete <10 μm particles. Dilution of these fine-grained contaminated particles within natural pelitic sediments will likely reduce the overall ecosystems impacts; but the risks to filter and bottom feeding organisms, and the potential for biomagnification across trophic levels are poorly understood.
|
Oct 2025
|
|
I18-Microfocus Spectroscopy
|
Xutong
Wang
,
Huwei
Li
,
Junxia
Wang
,
Wolfram
Buss
,
Anna
Bogush
,
Ondrej
Masek
,
Youjun
Zhang
,
Fan
Yu
,
Beibei
Yan
,
Zhanjun
Cheng
,
Xiaoqiang
Cui
,
Guanyi
Chen
,
Konstantin
Ignatyev
Diamond Proposal Number(s):
[32515]
Abstract: Recycling of sewage sludge and the endogenous phosphorus (P) is a promising strategy for sustainable development, while the disposal of heavy metals (HMs) in sewage sludge and the recovery of targeted P species remain challenges. An innovative method coupling electrokinetic treatment with pyrolysis was proposed in the present study to achieve the effective reclamation of available P and the separation of HMs from sewage sludge. The pristine and FeCl3-assisted electrokinetic treatment were employed for the removal of HMs from sewage sludge and to modify the P species, and the subsequent pyrolysis (300–700 °C) was conducted for the recovery of available P along with the production of biochar. The X-ray absorption near-edge spectroscopy (XANES), 31P liquid nuclear magnetic resonance (NMR) spectroscopy, and sequential chemical extraction were used to systematically determine the evolution of P during the combined treatment of sewage sludge. 19.69–24.80 % of Ni, Cu, and Zn were removed from sewage sludge after pristine electrokinetic treatment, and the HM removal efficiency was further elevated to 47.01–56.86 % with the assistance of FeCl3. Consequently, in comparison with the raw sewage sludge-derived biochars (SBs), the biochars derived from FeCl3-assisted electrokinetic treated sewage sludge (FESBs) contained much lower HM contents and showed higher stability of HMs. The FeCl3-assisted electrokinetic treatment converted alkaline biochars dominated by poorly soluble Ca-phosphates into neutral to slightly acidic biochars dominated by Al/Fe-associated phosphates. This transformation greatly improved the available P concentrations determined by diffusive gradients in thin film in FESBs by 0.6–1.3 folds compared to untreated SBs. Therefore, coupling FeCl3–assisted electrokinetic treatment with pyrolysis could be a promising strategy to achieve the reclamation of available P and the separation of HMs from sewage sludge.
|
Jul 2025
|
|
I18-Microfocus Spectroscopy
|
Sarah B.
Gosling
,
Emily L.
Arnold
,
Lois
Adams
,
Paul
Cool
,
Kalotina
Geraki
,
Mark O.
Kitchen
,
Iain D.
Lyburn
,
Keith D.
Rogers
,
Tim
Snow
,
Nick
Stone
,
Charlene E.
Greenwood
Diamond Proposal Number(s):
[31847]
Open Access
Abstract: Calcifications across the body offer snapshots of the surrounding ionic environment at the time of their formation. Links between prostate calcification chemistry and cancer are becoming of increasing interest, particularly in identifying biomarkers for disease. This study utilizes X-ray fluorescence mapping of 72 human prostate calcifications, measured at the I18 beamline at the Diamond Light Source, to determine the links between calcifications and their environment. This paper offers the first investigation of the elemental heterogeneity of prostate calcifications, demonstrating lower relative levels of minor elements at the calcification center compared to the edge but higher levels of zinc. Importantly, this study uniquely presents links between average Fe, Cr, Mn, Cu, and Ni ratios and grade Group (a classification system for urological tumors, specifically for prostate cancer), highlighting a potential avenue of exploration for biomarkers in prostate calcifications.
|
Jul 2025
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[33166]
Open Access
Abstract: Operating lithium ion batteries (LIBs) to high charging cut off potentials allows us to accommodate a further push in energy density. However, it requires a thorough understanding of the interplay and temperature dependence of parasitic reactions that aggravate the aging of the electrolyte and the cathode/anode electrodes. In the present study we investigated the interplay of the chemical and the electrochemical electrolyte oxidation, how they are related to the dissolution of transition metal (TM) ions from the cathode active material (CAM), and how they shift or accelerate with temperature. Through an optimized electrochemical protocol an excellent potential dependence of the gas evolution of a LiNi0.80Co0.15Al0.05O2 (NCA) charged against a free standing graphite on a lithium metal electrode in a LP47 electrolyte was achieved. We identified O2 and PF5 gas as suitable proxies for the chemical and electrochemical electrolyte oxidation, respectively. Both processes are separated by at least 300 mV over a temperature range from 10 to 45°C. Through temperature-dependent operando hard X ray absorption spectroscopy measurements and their comparison with the gassing results, it will be shown, that the electrochemical oxidation of the electrolyte is directly linked to the dissolution of TMs, while the chemical electrolyte oxidation mainly leaves the transition metal dissolution unaffected.
|
Jun 2025
|
|
I18-Microfocus Spectroscopy
|
R.
Kinet
,
M.
Bourdenx
,
S.
Dovero
,
M.
Darricau
,
M.-L.
Arotcarena
,
S.
Camus
,
G.
Porras
,
M.-L.
Thiolat
,
I.
Trigo-Damas
,
S.
Bohic
,
M.
Morari
,
E.
Doudnikoff
,
M.
Goikoetxea
,
S.
Claverol
,
C.
Tokarski
,
N.
Kruse
,
B.
Mollenhauer
,
C.
Estrada
,
N.
Garcia-Carrillo
,
M. T.
Herrero
,
M.
Vila
,
J. A.
Obeso
,
E.
Bezard
,
B.
Dehay
Diamond Proposal Number(s):
[13009]
Open Access
Abstract: The presence of α-synuclein (α-syn) aggregates, such as Lewy bodies in patients with Parkinson’s disease (PD), contributes to dopaminergic cell death. Injection of PD patient–derived α-syn in nonhuman primates has illustrated the exquisite vulnerability of primate dopaminergic neurons. Here, we aimed to elucidate the temporal and spatial pathological changes induced by two distinct α-syn pathogenic structures, having large or small sizes. To unravel the underlying molecular pathways, we conducted a proteomic analysis of the putamen and the entorhinal cortex, two brain regions carrying notable α-syn pathology. We demonstrate that distinct assemblies of α-syn aggregates drive unique pathogenic changes that ultimately result in a comparable extent of nigrostriatal degeneration at the level of nigral dopaminergic neuron cell bodies and striatal dopaminergic terminals. More broadly, our findings identify pathogenic trajectories associated with large or small α-syn aggregates, suggesting the existence of several possible concomitant pathogenic routes in PD.
|
Jun 2025
|
|
I18-Microfocus Spectroscopy
|
Clare L.
Thorpe
,
Nick
Aldred
,
Stuart
Creasey-Gray
,
Martin C.
Stennett
,
Eperke A.
Rencz
,
Susan
Nehzati
,
Latham T.
Haigh
,
Garry
Manifold
,
Nishta
Vallo
,
Christoph
Lenting
,
Claire L.
Corkhill
,
Russell J.
Hand
Diamond Proposal Number(s):
[38045]
Open Access
Abstract: Glass ingots of lead silicate composition from the shipwreck of the Albion were studied to ascertain the chemistry and mineralogy of alteration products after exposure to seawater for 220 years. Alteration observed on natural samples was compared to that of the same glasses exposed to short-term, high temperature, laboratory dissolution tests in synthetic seawater and significant differences were observed. Alteration layers on natural samples were more chemically complex having sequestered high concentrations of elements present only at trace quantities in seawater. Electron microprobe analysis and microfocus x-ray absorption spectroscopy shows that P, most likely released by biological activity in the vicinity of the wreck, accumulated in naturally altered samples to form Pb–Ca-phosphate phases whilst Pb-sulphate phases formed in laboratory tests. Meanwhile Fe, present at < 0.3 wt % in the glass and ppb concentrations in seawater, accumulated to form Fe-silicates whilst Mg-silicates predominated in laboratory tests. Biologically induced corrosion of naturally altered samples was also considered. Experiments conducted to test barnacle settlement rates suggest that biotoxic elements within the glass, primarily Pb but potentially also Cu, Co and Ni deterred barnacle settlement. Despite this toxicity, some colonisation of the glass surface by both barnacles and bryozoan did occur and, whilst barnacles appeared to protect against chemical attack, bryozoan colonies caused increased cracking, possibly due stress created at the glass surface. Results highlight the challenges in recreating open, natural systems in laboratory settings and demonstrate that elements present at low concentrations can have a significant impact over long timescales.
|
May 2025
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[33049]
Open Access
Abstract: Risk management for agricultural use of digested sewage sludge requires better understanding of the behaviour and fate of contaminant metals in the plant root zone. A study employing rhizo-pot and plug-tray experiments was conducted to identify the zone near spring barley roots (Hordeum vulgare) where concentration and speciation of Cu and Zn are affected. Cu and Zn bonding environments in the root epidermis/cortex and vascular tissue were also identified. In the digested sludge-amended soil, spring barley absorbed Cu only from the immediate vicinity of the roots (<< 1 mm), but Zn was taken up from further afield (> 1 mm). In the rhizosphere Cu was predominately present as Cu(I) oxides or as Cu(II) absorbed/bonded to phosphate, whereas Zn was present as Zn(II) in inner-sphere complexes with metal oxide surfaces, as Zn(II) sulphides or Zn(II) bonded to/incorporated into carbonates. Cu taken-up by spring barley roots was largely sequestered in the root epidermis and/or cortex predominately in the coordination environments similar to those seen in the rhizosphere. Only a small proportion of the Cu was translocated into the vascular tissue (where it is in the same two bonding environments). Zn taken-up by spring barley roots was present as Zn(II) sulphides, Zn(II) absorbed to/incorporated into carbonates, or Zn(II)-organic complexes. Zn was readily translocated from roots to shoots. Better understanding of these differences in the mobility and uptake of Cu and Zn in sludge-amended agricultural soils could be used to undertake element specific risk assessments.
|
May 2025
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[23724]
Abstract: Dental caries is the most prevalent oral disease that causes structural and compositional changes of the dental hard tissues due to a chronic demineralisation (combined with possible phases of remineralisation) process. The changes can affect most important oral functions and aesthetics, as well as causing pain and discomfort. Though considerable efforts have been directed at studying natural and artificial carious lesions, most characterisations remain either constrained to 2D analyses or have been unable to achieve fine resolution in 3D due to limited field of view. To overcome this challenge, the present study combined X-ray diffraction (XRD) and scanning transmission X-ray microscopy (STXM) tomography techniques to analyse the mineral density, scattering intensity, and crystallite size in normal, carious, 30 % artificially demineralised, and 50 % artificially demineralised dentine. Combined XRD and STXM tomography was performed on the I18 beamline at Diamond Light Source, using a 15 keV monochromatic beam with 2 × 2 μm spotsize and scanning with translation steps of 2 μm, providing a reconstructed voxel size of 2 × 2 × 2 μm. Natural carious dentine showed a reduction in hydroxyapatite (HAp) crystallite size due to chronic demineralisation. This was unlike artificially demineralised dentine samples that underwent short, continuous demineralisation, which created a zone of fully demineralised dentine, near the sample surface, and a zone of partially demineralised dentine that had a reduced mineral density but an increased average crystallite size.
|
May 2025
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[31591, 35606]
Open Access
Abstract: Despite being pivotal to the habitability of our planet, the process by which Earth gained its present-day hydrogen budget is unclear. Due to their isotopic similarity to terrestrial rocks across a range of elements, the meteorite group that is thought to best represent Earth's building blocks is the enstatite chondrites (ECs). Because of ECs' nominally anhydrous mineralogy, these building blocks have long been presumed to have supplied negligible hydrogen to the proto-Earth. However, recent bulk compositional measurements suggest that ECs may unexpectedly contain enough hydrogen to readily explain Earth's present-day water abundance. Together, these contradictory findings mean the contribution of ECs to Earth's hydrogen budget is currently unclear. As such, it is uncertain whether appreciable hydrogen is a systematic outcome of Earth's formation. Here, we explore the amount of hydrogen in ECs as well as the phase that may carry this element using sulfur X-ray absorption near edge structure (S-XANES) spectroscopy. We find that hydrogen bonded to sulfur is prevalent throughout the meteorite, with fine matrix containing on average almost 10 times more Hsingle bondS than chondrule mesostasis. Moreover, the concentration of the Hsingle bondS bond is linked to the abundance of micrometre-scale pyrrhotite (Fe1-xS, 0 < x < 0.125). This sulfide can sacrificially catalyse a reaction with H2 from the disk at high temperatures to create H2S, which could be dissolved in adjoining molten silicate-rich material. Upon rapid cooling, this assemblage would form pyrrhotite encased in submicron silicate-rich glass that carries trapped H2S. These findings indicate that hydrogen is present in ECs in higher concentrations than previously considered and could suggest that this element may have a systematic, rather than stochastic, origin on our planet.
|
Apr 2025
|
|
I18-Microfocus Spectroscopy
|
Sarah B.
Gosling
,
Emily L.
Arnold
,
Lois
Adams
,
Paul
Cool
,
Kalotina
Geraki
,
Mark O.
Kitchen
,
Iain D.
Lyburn
,
Keith D.
Rogers
,
Tim
Snow
,
Nick
Stone
,
Charlene E.
Greenwood
Diamond Proposal Number(s):
[31847]
Open Access
Abstract: Prostate cancer remains the most common male cancer; however, treatment regimens remain unclear in some cases due to a lack of agreement in current testing methods. Therefore, there is an increasing need to identify novel biomarkers to better counsel patients about their treatment options. Microcalcifications offer one such avenue of exploration. Microfocus spectroscopy at the i18 beamline at Diamond Light Source was utilised to measure X-ray diffraction and fluorescence maps of calcifications in 10 µm thick formalin fixed paraffin embedded prostate sections. Calcifications predominantly consisted of hydroxyapatite (HAP) and whitlockite (WH). Kendall’s Tau statistics showed weak correlations of ‘a’ and ‘c’ lattice parameters in HAP with GG (rτ = − 0.323, p = 3.43 × 10–4 and rτ = 0.227, p = 0.011 respectively), and a negative correlation of relative zinc levels in soft tissue (rτ = − 0.240, p = 0.022) with GG. Negative correlations of the HAP ‘a’ axis (rτ = − 0.284, p = 2.17 × 10–3) and WH ‘c’ axis (rτ = − 0.543, p = 2.83 × 10–4) with pathological stage were also demonstrated. Prostate calcification chemistry has been revealed for the first time to correlate with clinical markers, highlighting the potential of calcifications as biomarkers of prostate cancer.
|
Apr 2025
|
|