Accelerator Physics
Optics
|
Open Access
Abstract: In the Diamond Light Source storage ring, the vertical emittance is kept at 8 pm rad during operation to maintain the source brightness for the users. This is achieved by a feedback which modifies the skew quadrupole strengths, but has disadvantages such as the introduction of betatron coupling and vertical dispersion. For the proposed Diamond-II upgrade, the storage ring will have a much smaller horizontal emittance, meaning a significantly larger coupling would be required to reach the target vertical emittance, negatively affecting the off-axis injection process. To solve this problem, a feedback using the transverse multibunch feedback striplines to drive the beam at a synchrotron sideband is planned. By driving the beam resonantly in this way, the emittance can be increased without modification of the optics. This paper describes simulations of the effects of linear and non-linear optics on the excitation as well as the impact of the machine impedance for the Diamond-II storage ring.
|
Jan 2023
|
|
B16-Test Beamline
Optics
|
Open Access
Abstract: High-speed adaptive correction of optics, based on real-time metrology feedback, has benefitted numerous scientific communities for several decades. However, it remains a major technological challenge to extend this concept into the hard x ray regime due to the necessity for active mirrors with single-digit nanometer height errors relative to a range of aspheric forms. We have developed a high-resolution, real-time, closed-loop “adaptive” optical system for synchrotron and x ray free electron laser (XFEL) applications. After calibration of the wavefront using x ray speckle scanning, the wavefront diagnostic was removed from the x ray beam path. Non-invasive control of the size and shape of the reflected x ray beam was then demonstrated by driving a piezoelectric deformable bimorph mirror at ∼1Hz
. Continuous feedback was provided by a 20 kHz direct measurement of the optical surface with picometer sensitivity using an array of interferometric sensors. This enabled a non-specialist operator to reproduce a series of pre-defined x ray wavefronts, including focused or non-Gaussian profiles, such as flattop intensity or multiple split peaks with controllable separation and relative amplitude. Such changes can be applied in any order and in rapid succession without the need for invasive wavefront diagnostic sensors that block the x ray beam for scientific usage. These innovations have the potential to profoundly change how x ray focusing elements are utilized at synchrotron radiation and XFEL sources and provide unprecedented dynamic control of photon beams to aid scientific discoveries in a wide range of disciplines.
|
Jan 2023
|
|
I13-1-Coherence
I13-2-Diamond Manchester Imaging
Optics
|
Open Access
Abstract: I13 is a 250 m long hard X-ray beamline for imaging and coherence experiments at the Diamond Light Source [1]. The beamline comprises two independent experimental branches: one for imaging in direct space using X-ray microscopy and one for imaging in reciprocal space using coherent imaging techniques. The mechanical stability is very important for implementation of increased capabilities at latest generation of long beamlines [2]. Therefore, the beam stability monitoring is essential part of the day-to-day operation of the beamlines as well as for analysis of mechanical instability sources for the Diamond II upgrade. In this paper we present the setup developed to measure mechanical stability of beamline based on optical autocollimator.
|
Dec 2022
|
|
Optics
|
Open Access
Abstract: Angle-resolved photoemission spectroscopy (ARPES) is a powerful method for measuring the electronic band structure of solids. Diamond Light Source is planning to build a multibend-achromat (MBA) synchrotron – Diamond-II - which will provide an almost diffraction-limited photon source in the vacuum-ultraviolet photon energy range. The improved emittance and higher coherence of MBA synchrotrons means that samples with features smaller than 1 µm can be readily studied using ARPES, provided the beamline is designed to take full advantage of the new photon source. We have developed an analytical method for optimising the optical design of a future Nano-ARPES beamline for Diamond-II. Our method enables one to explore large regions of parameter space for a beamline design in an unbiased and systematic way, with minimal requirements on computing power. We believe that the analytical method presented here will be a useful tool for synchrotron beamline designers, as it allows many beamline characteristics to be simulated quickly while working within any practical limitations.
|
Dec 2022
|
|
Optics
|
Open Access
Abstract: As the Diamond Light Source embraces the move towards becoming a fourth generation light source it will require its optics to perform under increasingly demanding conditions. Foremost amongst these conditions will be the increasing powers they are subjected to and the reducing real estate they must perform in. With these new challenges comes the need for greater understanding of how optics are assembled and how consistently this activity is carried out. In this paper, the concept of using passive resonant structures as part of a precision assembly approach for such optics is introduced. Numerical simulation of a passive resonant device comprising tines which are compressed as clamping force is increased is presented, revealing a frequency shift from intermediately fastened to fully tightened. This approach has the potential to provide a robust, game changing improvement to the accuracy of assembly of X-ray optics and subsequently a significant improvement in their performance.
|
Dec 2022
|
|
Optics
|
Abstract: With brighter synchrotron sources, automated sample changers, and faster detectors, there is a strong scientific need for rapid and precise variation of the X-ray beam profile, rather than the "set and forget" operation of years past. Piezoelectric bimorph deformable mirrors already allow quick beam profile changes without the heat generation and wear of mechanical devices. Now, their early technological limitations – excessively constraining holders, progressive "junction effect" distortion, and communication bottlenecks with power supplies – are being overcome by a collaboration of scientists and engineers both in industry and at Diamond Light Source. A new generation of bimorph mirrors maintains a stable figure over extended periods of operation. Improved holders and flexible electrical connectors are greatly reducing the mechanical strain imparted to bimorphs, thereby improving their speed, accuracy, and stability. A more sophisticated high voltage power supply has on-board signal processing capacity, allowing large focusing changes within seconds and providing programmable time-varying voltage profiles to counteract piezoelectric creep. The communication between beamline systems and power supplies is being freed of bottlenecks and now runs stably up to 1 Hz. Early tests have already shown that bimorph mirrors can repeatedly switch the size of an X-ray beam in well under 10 seconds. Bimorph mirrors at synchrotron beamlines are now growing beyond the largely static operation of the past and gaining a new dynamism through development projects that are now well advanced. We report on how these endeavours will make it easier for beamlines to utilise the full potential of bimorph mirrors.
|
Dec 2022
|
|
Optics
|
Open Access
Abstract: We present the development of a Fizeau interferometer stitching system to characterize the surface profile of state-of-the-art X-ray optics for synchrotron and free electron laser sources. Controls and acquisition software precisely translate and rotate the surface under test in synchrony with data capture by a Zygo Verifire HDX interferometer. Overlapping sub-aperture images are combined into a composite, high-spatial resolution topographical image of the entire optical surface using PyLOSt stitching software produced by the MooNpics collaboration. After minimization of random and systematic measurement errors, system performance was quantified by characterizing two challenging optics. These optics represent extreme cases for synchrotron X-ray mirrors: an aspheric elliptical profile with a slope error of ∼50 nrad rms, and a corresponding height error of 0.2 nm rms; and a chirped periodic structure superimposed upon a strong curvature (radius ∼ 9.33 m). Results are in very good agreement with the Diamond-NOM slope profilometer and Bruker GTX stitching micro-interferometer. Without a specialist transmission reference, both optics could not be measured by the interferometer without pitch and translation stitching. Any individual HDX scan, relative to the average of the ensemble, has an average slope error repeatability of < 15 nrad rms. After calibration of the transmission reference flat and zoom factor, a reproducibility of ∼ 27 nrad rms compared to the Diamond-NOM, was achieved for the elliptically curved mirror.
|
Nov 2022
|
|
B16-Test Beamline
Metrology
Optics
|
Open Access
Abstract: Speckle-based at-wavelength metrology techniques now play an important role in X-ray wavefront measurements. However, for reflective X-ray optics, the majority of existing speckle-based methods fail to provide reliable 2D information about the optical surface being characterized. Compared with the 1D information typically output from speckled-based methods, a 2D map is more informative for understanding the overall quality of the optic being tested. In this paper, we propose a method for in situ 2D absolute metrology of weakly focusing X-ray mirrors. Importantly, the angular misalignment of the mirror can be easily corrected with the proposed 2D processing procedure. We hope the speckle pattern data processing method presented here will help to extend this technique to wider applications in the synchrotron radiation and X-ray free-electron laser communities.
|
Nov 2022
|
|
Optics
|
Open Access
Abstract: The design of X-ray optics based on diffraction from crystals depends on the accurate calculation of the structure factors of their Bragg reflections over a wide range of temperatures. In general, the temperature dependence of the lattice parameters, the atomic positions and the atomic thermal vibrations is both anisotropic and nonlinear. Implemented here is a software package for precise and flexible calculation of structure factors for dynamical diffraction. α-Quartz is used as an example because it presents the challenges mentioned above and because it is being considered for use in high-resolution X-ray spectroscopy. The package is designed to be extended easily to other crystals by adding new material files, which are kept separate from the package's stable core. Python 3 was chosen as the language to allow the easy integration of this code into existing packages. The importance of a correct anisotropic treatment of the atomic thermal vibrations is demonstrated by comparison with an isotropic Debye model. Discrepancies between the two models can be as much as 5% for strong reflections and considerably larger (even to the level of 100%) for weak reflections. A script for finding Bragg reflections that backscatter X-rays of a given energy within a given temperature range is demonstrated. The package and example scripts are available on request. Also discussed, in detail, are the various conventions related to the proper description of chiral quartz.
|
Aug 2022
|
|
B16-Test Beamline
Optics
|
Open Access
Abstract: Advances in accelerator technologies have enabled the continuous development of synchrotron radiation and X-ray free electron laser (XFEL) sources. At the same time, it has been critical to perform in-situ wavefront sensing to aid delivery of high-quality X-ray beams to the end users of these facilities. The speckle-based scanning technique has obtained popularity due to its high spatial resolution and superior sensitivity compared to other wavefront sensing methods. However, these advantages often come at the expense of longer data acquisition times since multiple images have to be collected to derive the necessary wavefront information. Whereas initial speckle tracking techniques could obtain wavefront information relatively quickly, the installation of additional hardware was routinely required to do so. Here, we propose a novel speckle-based approach, termed Alternating Speckle Tracking (AST), to perform fast wavefront sensing within a conventional beamline setup. The wavefront information derived from the new technique has proven to be valuable for many applications that require temporal resolution. Importantly, both horizontal and vertical wavefront information can be simultaneously derived by moving the speckle generator along the diagonal direction. We expect this method will be widely used by the synchrotron radiation and XFEL community in the future.
|
Aug 2022
|
|