I02-Macromolecular Crystallography
Data acquisition
Detectors
Diagnostics
Health Physics
|
Abstract: The deubiquitinating enzyme USP7 has a pivotal role in regulating the stability of proteins involved in fundamental cellular processes of normal biology and disease. Despite the importance of USP7, the mechanisms underlying substrate recognition and catalytic activation are poorly understood. Here we present structural, biochemical, and biophysical analyses elucidating the molecular mechanism by which the C-terminal 19 amino acids of USP7 (residues 1084-1102) enhance the ubiquitin cleavage activity of the deubiquitinase (DUB) domain. Our data demonstrate that the C-terminal peptide binds the activation cleft in the catalytic domain and stabilizes the catalytically competent conformation of USP7. Additional structures of longer fragments of USP7, as well as solution studies, provide insight into full-length USP7, the role of the UBL domains, and demonstrate that both substrate recognition and deubiquitinase activity are highly regulated by the catalytic and noncatalytic domains of USP7, afeature that could be essential for the proper function of multi-domain DUBs.
|
Aug 2016
|
|
I02-Macromolecular Crystallography
I04-Macromolecular Crystallography
Data acquisition
Detectors
Diagnostics
Health Physics
|
Diamond Proposal Number(s):
[6386]
Open Access
Abstract: α-actinin 2 (ACTN2) is the only muscle isoform of α-actinin expressed in cardiac muscle. Mutations in this protein have been implicated in mild to moderate forms of hypertrophic cardiomyopathy (HCM). We have investigated the effects of two mutations identified from HCM patients; A119T and G111V, on the secondary and tertiary structure of a purified actin binding domain of ACTN2 by circular dichroism and X-ray crystallography, and show small but distinct changes for both mutations. We also find that both mutants have reduced F-actin binding affinity, although the differences are not significant. The full length mEos2 tagged protein expressed in adult cardiomyocytes shows that both mutations additionally affect Z-disc localisation and dynamic behaviour. Overall, these two mutations have small effects on structure, function and behaviour, which may contribute to a mild phenotype for this disease.
|
Aug 2016
|
|
I02-Macromolecular Crystallography
Detectors
Diagnostics
Health Physics
|
Open Access
Abstract: Replisome assembly at eukaryotic replication forks connects the DNA helicase to DNA polymerases and many other factors. The helicase binds the leading-strand polymerase directly, but is connected to the Pol alpha lagging-strand polymerase by the trimeric adaptor Ctf4. Here, we identify new Ctf4 partners inaddition to Pol alpha and helicase, all of which contain a "Ctf4-interacting-peptide" or CIP-box. Crystallographic analysis classifies CIP-boxes into two related groups that target different sites on Ctf4. Mutations in the CIP-box motifs of the Dna2 nuclease or the rDNA-associated protein Tof2 do not perturb DNA synthesis genome-wide, but instead lead to a dramatic shortening of chromosome 12 that contains the large array of rDNA repeats. Our data reveal unexpected complexity of Ctf4 function, as a hub that connects multiple accessory factors to the replisome. Most strikingly, Ctf4-dependent recruitment of CIP-box proteins couples other processes to DNA synthesis, including rDNA copy-number regulation.
|
Aug 2016
|
|
B21-High Throughput SAXS
I02-Macromolecular Crystallography
Data acquisition
Diagnostics
Health Physics
|
Diamond Proposal Number(s):
[12346]
Open Access
Abstract: Protein antibiotics (bacteriocins) are a large and diverse family of multidomain toxins that kill specific Gram-negative bacteria during intraspecies competition for resources. Our understanding of the mechanism of import of such potent toxins has increased significantly in recent years especially with the reporting of several structures of bacteriocin domains. Less well understood is the structural biochemistry of intact bacteriocins and how these compare across bacterial species. Here we focus on endonuclease (DNase) bacteriocins that target the genomes of Escherichia coli and Pseudomonas aeruginosa , known as E-type colicins and S-type pyocins, respectively, bound to their specific immunity (Im) proteins. First, we report the 3.2 Å structure of the DNase colicin ColE9 in complex with its ultra-high affinity immunity protein, Im9. In contrast to Im3, which when bound to the ribonuclease (rRNase) domain of the homologous colicin ColE3 makes contact with the translocation (T-) domain of the toxin, we find that Im9 makes no such contact and only interactions with the ColE9 cytotoxic domain are observed. Second, we report small angle X-ray scattering (SAXS) data for two S-type DNase pyocins, S2 and AP41, into which are fitted recently determined X-ray structures for isolated domains. We find that DNase pyocins and colicins are both highly elongated molecules even though the order of their constituent domains differs. We discuss the implications of these architectural similarities and differences in the context of the translocation mechanism of protein antibiotics through the cell envelope of Gram-negative bacteria.
|
Jul 2016
|
|
I02-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
Data acquisition
Detectors
Diagnostics
Health Physics
|
Abstract: HIV-1 Rev protein mediates the nuclear export of viral RNA genomes. To do so, Rev oligomerizes cooperatively onto an RNA motif, the Rev response element (RRE), forming a complex that engages with the host nuclear export machinery. To better understand Rev oligomerization, we determined four crystal structures of Rev N-terminal domain dimers, which show that they can pivot about their dyad axis, giving crossing angles of 90° to 140°. In parallel, we performed cryoelectron microscopy of helical Rev filaments. Filaments vary from 11 to 15nm in width, reflecting variations in dimer crossing angle. These structures contain additional density, indicating that C-terminal domains become partially ordered in the context of filaments. This conformational variability may be exploited in the assembly of RRE/Rev complexes. Our data also revealed a third interface between Revs, which offers an explanation for how the arrangement of Rev subunits adapts to the "A"-shaped architecture of the RRE in export-active complexes.
|
Jul 2016
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
Detectors
Diagnostics
Health Physics
|
Open Access
Abstract: Gram-negative bacteria such as E. coli use tripartite efflux pumps such as AcrAB-TolC to expel antibiotics and noxious compounds. A key feature of the inner membrane transporter component, AcrB, is a short stretch of residues known as the gate/switch loop that divides the proximal and distal substrate binding pockets. Amino acid substitutions of the gate loop are known to decrease antibiotic resistance conferred by AcrB. Here we present two new AcrB gate loop variants, the first stripped of its bulky side chains, and a second in which the gate loop is removed entirely. By determining the crystal structures of the variant AcrB proteins in the presence and absence of erythromycin and assessing their ability to confer erythromycin tolerance, we demonstrate that the gate loop is important for AcrB export activity but is not required for erythromycin binding.
|
Jul 2016
|
|
I02-Macromolecular Crystallography
Data acquisition
Detectors
Diagnostics
Health Physics
|
Diamond Proposal Number(s):
[5787]
Abstract: A novel Nickel (II) complex of 2-hydroxypyridine-N-oxide has been prepared and characterized by X-ray crystal structure analysis, FT-IR, UV spectra and thermogravimetry. The X-ray diffraction study reveals that the nickel complex is a 1D linear polymer in space group Pī with a = 6.250(1), b = 8.746(2), c = 9.462(2) Å, α = 81.76(3)o, β = 79.55(3)o and γ = 81.17(3)o. Two nickel ions are present in the unit cell related by the crystallographic centre of symmetry at ½ ½ ½. There are two different short non-bonded Ni to Ni separations in the polymeric structure: 3.454 and 3.467 Å respectively. Both room temperature magnetic moment measurements, and theoretical calculations are in favor of a simple paramagnetic system. As a complementary study, plane wave pseudopotential DFT calculations were performed, utilizing eight different XC functionals. The PBE and PBE0 functionals reproduce well the X-ray crystal structure of the complex, while the HSE functional gives a band gap which corresponds reasonably to the experimentally estimated value. The results of antimicrobial properties and thermal analysis of the complex are also reported.
|
Jul 2016
|
|
I02-Macromolecular Crystallography
Accelerator Physics
Detectors
Diagnostics
Health Physics
|
Diamond Proposal Number(s):
[10071]
Open Access
Abstract: Deubiquitinating enzymes (DUBs) remove ubiquitin (Ub) from Ub-conjugated substrates to regulate the functional outcome of ubiquitylation. Here we report the discovery of a new family of DUBs, which we have named MINDY (motif interacting with Ub-containing novel DUB family). Found in all eukaryotes, MINDY-family DUBs are highly selective at cleaving K48-linked polyUb, a signal that targets proteins for degradation. We identify the catalytic activity to be encoded within a previously unannotated domain, the crystal structure of which reveals a distinct protein fold with no homology to any of the known DUBs. The crystal structure of MINDY-1 (also known as FAM63A) in complex with propargylated Ub reveals conformational changes that realign the active site for catalysis. MINDY-1 prefers cleaving long polyUb chains and works by trimming chains from the distal end. Collectively, our results reveal a new family of DUBs that may have specialized roles in regulating proteostasis.
|
Jul 2016
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
Data acquisition
Detectors
Diagnostics
Health Physics
|
Diamond Proposal Number(s):
[10627]
Abstract: Ebola viruses (EBOVs) are responsible for repeated outbreaks of fatal infections, including the recent deadly epidemic in West Africa. There are currently no approved therapeutic drugs or vaccines for the disease. EBOV has a membrane envelope decorated by trimers of a glycoprotein (GP, cleaved by furin to form GP1 and GP2 subunits), which is solely responsible for host cell attachment, endosomal entry and membrane fusion(1-7). GP is thus a primary target for the development of antiviral drugs. Here we report the first, to our knowledge, unliganded structure of EBOV GP, and high-resolution complexes of GP with the anticancer drug toremifene and the painkiller ibuprofen. The high-resolution apo structure gives a more complete and accurate picture of the molecule, and allows conformational changes introduced by antibody and receptor binding to be deciphered(8-10). Unexpectedly, both toremifene and ibuprofen bind in a cavity between the attachment (GP1) and fusion (GP2) subunits at the entrance to a large tunnel that links with equivalent tunnels from the other monomers of the trimer at the three-fold axis. Protein-drug interactions with both GP1 and GP2 are predominately hydrophobic. Residues lining the binding site are highly conserved among filoviruses except Marburg virus (MARV), suggesting that MARV may not bind these drugs. Thermal shift assays show up to a 14 degrees C decrease in the protein melting temperature after toremifene binding, while ibuprofen has only a marginal effect and is a less potent inhibitor. These results suggest that inhibitor binding destabilizes GP and triggers premature release of GP2, thereby preventing fusion between the viral and endosome membranes. Thus, these complex structures reveal the mechanism of inhibition and may guide the development of more powerful anti-EBOV drugs.
|
Jul 2016
|
|
I02-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
Data acquisition
Detectors
Diagnostics
Health Physics
|
Immacolata
Venditto
,
Ana S.
Luis
,
Maja
Rydahl
,
Julia
Schückel
,
Vânia O.
Fernandes
,
Silvia
Vidal-Melgosa
,
Pedro
Bule
,
Arun
Goyal
,
Virginia M. R.
Pires
,
Catarina G.
Dourado
,
Luís M. A.
Ferreira
,
Pedro M.
Coutinho
,
Bernard
Henrissat
,
J. Paul
Knox
,
Arnaud
Baslé
,
Shabir
Najmudin
,
Harry J.
Gilbert
,
William G. T.
Willats
,
Carlos M. G. A.
Fontes
Diamond Proposal Number(s):
[9948]
Abstract: The breakdown of plant cell wall (PCW) glycans is an important biological and industrial process. Noncatalytic carbohydrate binding modules (CBMs) fulfill a critical targeting function in PCW depolymerization. Defining the portfolio of CBMs, the CBMome, of a PCW degrading system is central to understanding the mechanisms by which microbes depolymerize their target substrates. Ruminococcus flavefaciens, a major PCW degrading bacterium, assembles its catalytic apparatus into a large multienzyme complex, the cellulosome. Significantly, bioinformatic analyses of the R. flavefaciens cellulosome failed to identify a CBM predicted to bind to crystalline cellulose, a key feature of the CBMome of other PCW degrading systems. Here, high throughput screening of 177 protein modules of unknown function was used to determine the complete CBMome of R. flavefaciens. The data identified six previously unidentified CBMfamilies that targeted beta-glucans, beta-mannans, and the pectic polysaccharide homogalacturonan. The crystal structures of four CBMs, in conjunction with site-directed mutagenesis, provide insight into the mechanism of ligand recognition. In the CBMs that recognize beta-glucans and beta-mannans, differences in the conformation of conserved aromatic residues had a significant impact on the topology of the ligand binding cleft and thus ligand specificity. A cluster of basic residues in CBM77 confers calcium-independent recognition of homogalacturonan, indicating that the carboxylates of galacturonic acid are key specificity determinants. This report shows that the extended repertoire of proteins in the cellulosome of R. flavefaciens contributes to an extended CBMome that supports efficient PCW degradation in the absence of CBMs that specifically target crystalline cellulose.
|
Jun 2016
|
|