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PACS 61.44.Fw — Incommensurate crystals

PACS 61.50.Ks — Crystallographic aspects of phase transformations; pressure effects

PACS 64.70.K- — Solid-solid transitions

Abstract — The prototypical family of incommensurate composite materials are the n-alkane/urea
inclusion compounds, in which n-alkane guest molecules are arranged in a periodic manner along
one-dimensional tunnels in a urea host structure, with an incommensurate relationship between
the periodicities of the host and guest substructures along the tunnel. We develop interpretations
of the structural periodicities, superspace group descriptions and symmetry properties of the low-
temperature phases of n-alkane/urea inclusion compounds, based in part on a high-resolution
synchrotron single-crystal X-ray diffraction study of n-nonadecane/urea. Specifically, we prove
that, on passing from phase I to phase II, the C-centering of the orthohexagonal unit cell is lost
for both the host and guest substructures, and that the symmetries of all phases I, IT and III are
described completely by (3+1)-dimensional superspace groups.

Copyright © EPLA, 2016

Aperiodic crystals are defined as materials that do not
have 3-dimensional translational periodicity, yet exhibit
sharp Bragg maxima in their X-ray diffraction patterns.
Among the various classes of aperiodic materials, incom-
mensurate solids [1] and quasicrystals [2] have received
particular attention both from the fundamental perspec-
tives of diffraction physics and structural science and with
regard to their potential applications [3,4].

Host/guest composite materials are constructed from
two interpenetrated substructures. In many cases, the
host and guest subsystems share common crystallographic
axes in three-dimensional space, and are commensurate
structures. However, in some cases, there is an irra-
tional relationship between the periodicities of the host
and guest substructures, at least in one direction, and such
materials are classified as incommensurate structures.

(a) E-mail: michel.couzi@u-bordeaux.fr
(P)E-mail: francois.guillaume@u-bordeaux.fr
()E-mail: HarriskDMQcardiff.ac.uk

The prototypical family of incommensurate composite ma-
terials is the nm-alkane/urea inclusion compounds [5-11],
in which linear chain n-alkane guest molecules are ar-
ranged in a periodic manner along one-dimensional tun-
nels (diameter ca. 5.25 A) that exist within the urea host
structure, which is constructed from a helical hydrogen-
bonded arrangement of urea molecules (fig. 1(a)).

Urea inclusion compounds exhibit a wealth of interest-
ing physico-chemical properties that are derived from their
unique structural characteristics including crystal growth
processes [12-16], X-ray dichroism [17] and X-ray birefrin-
gence [18]. A consequence of the incommensurateness of
urea inclusion compounds is that the set of guest molecules
may, in principle, slide along the host tunnel with essen-
tially zero activation energy; this phenomenon has been
harnessed in molecular transport experiments [19-22]. In
order to fully understand the properties of these materi-
als, it is imperative to establish an accurate description of
their aperiodic structures.
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Fig. 1: (Colour online) (a) Structure of an n-alkane/urea in-
clusion compound at ambient temperature viewed along the
tunnel axis. (b) Schematic representation of a tunnel inclusion
compound viewed perpendicular to the tunnel axis, showing
guest molecules (red) arranged along the host tunnel structure
(blue). The periodic repeat distances of the host and guest sub-
structures along the tunnel axis are denoted chost and cguest,
respectively.

The n-alkane/urea inclusion compounds are character-
ized by the following features at ambient temperature: i) a
hexagonal urea tunnel structure [5,6,8], ii) an incommen-
surate relationship [6,8,11,23-43] between the periodicities
of the host and guest substructures along the tunnel axis,
and iii) dynamic disorder of the guest molecules [32,44-49]
(reorientation about the tunnel axis and translations along
the tunnel axis).

Focusing on the incommensurate properties of n-
alkane/urea inclusion compounds, the misfit parameter
v is defined as ¥ = Chost/Cguest; Where Cpost and Cgyest
are the periodicities of the host and guest substructures
along the tunnel direction, respectively (fig. 1(b)). Clearly,
Chost depends on the pitch of the urea helix and cgyest de-
pends on the length of the n-alkane guest molecule. For
all n-alkane/urea inclusion compounds at ambient pres-
sure, Cpost ~ 11.02A [5,6]. In this paper, we focus on
the urea inclusion compounds containing m-nonadecane
[CH3(CHs2)17CH;s] and n-hexadecane [CHs(CHz)14CHs]
guest molecules.

At ambient temperature, the urea host substructure
has space group P6122 (or P6522) [5,6]. The compos-
ite crystal achieves 6-fold symmetry as a consequence of
the n-alkane guests being distributed statistically in at
least six equi-probable orientations. Under these con-
ditions, the n-alkane substructure is described by space
group P622. This assignment is based on the fact [7,29,50]
that the n-alkane guest molecules exhibit 3-dimensional
ordering in which guest molecules in adjacent tunnels are
located at the same set of positions (z-coordinates) along
the tunnel direction: i.e., the offset (A,), along the tun-
nel direction, between the positions of guest molecules in
adjacent tunnels (defined in ref. [29]) is Ay = 0.

It follows that the symmetry of the incommensurate
composite material is described by the (3+1)-dimensional
superspace group P6122(00v) [28-30] and four integer

indices (h, k, [, m) are required to index all Bragg peaks
in the diffraction pattern:
Qhklm =ha" +k b* +1 cltost +m c;uest' (1)

The reflections (h, k, I, m) can be subdivided into three
classes according to whether [ and m are zero or non-
zero: 1) m = 0: “main reflections” from the host substruc-
ture, which primarily contain information on the basic
host structure, but also contain information on the in-
commensurate modulations within the guest substructure;
ii) I = 0: “main reflections” from the guest substruc-
ture, which primarily contain information on the basic
guest structure, but also contain information on the in-
commensurate modulations within the host substructure;
iii) I # 0 and m # 0: “satellite reflections” that arise
due to the inter-modulation of the two substructures.
Each (h, k, 0, 0) reflection is the superposition of a main re-
flection from each substructure, representing the common
a*b* reciprocal lattice plane for the host and guest sub-
structures. The satellite reflections with [ # 0 and m # 0
are typically very weak in comparison to the other types of
reflection, and it is essential to use the high intensity of a
synchrotron source in order to be able to observe and mea-
sure these satellite reflections in X-ray diffraction data.

Many techniques have been used to explore struc-
tural phase transitions in n-alkane/urea inclusion com-
pounds [8,25,28-30,32,50-57]. Early studies reported that
n-alkane/urea inclusion compounds undergo a single phase
transition below ambient temperature [56] from the hexag-
onal phase I at ambient temperature to an orthorhombic
phase IT with space group P2,2:2; at low temperature.
It was later suggested [58] that this phase transition is
governed by a simple pseudospin-phonon model due to
an antiferro-ordering of the n-alkane guests affecting both
the host shearing and guest orientation. A theoretical
analysis [29] described the phase transitions within the
framework of a (3 + 1)-dimensional superspace group de-
scription of all possible group-subgroup related host and
guest sub-lattices. It followed that phase I is described by
superspace group P6122(007) and phase II is described by
superspace group P2712121(00v). In both phases I and II,
the host and guest substructures have the same periodici-
ties in the ab-plane, and the misfit parameter v along the
c-axis is the same. In the ab-plane, the unit cell of phase
IT closely approximates the orthohexagonal description of
the hexagonal unit cell of phase I (with orthorhombic lat-
tice parameters a, and b, related by: a, =~ b,+/3), but
with loss of C-centering.

A recent series of papers [11,36-43] has argued against
this simple generalized description of the phase transi-
tions in n-alkane/urea inclusion compounds. First, for
n-nonadecane/urea [11,36,38,42], in addition to the “clas-
sical” I+>II phase transition (discussed above) at temper-
ature T7, another phase transition at a lower temperature
T> was reported, corresponding to a weak thermal event
in DSC data [59]. The new phase below Tb is denoted
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phase III. Furthermore, it was reported that, for phase II,
no “main reflections” (i.e., (h, k, I, m) with { = 0 and/or
m = 0) were observed for which h + k is odd, leading to
the conclusion that this phase is based on a C-centred or-
thorhombic unit cell. Surprisingly, however, several satel-
lite reflections (i.e., (h, k, I, m) with I # 0 and m # 0)
were observed for values of h and k for which h + k is
odd [36,38,42], implying that the C-centering is actually
lost for the incommensurate inter-modulations. The po-
sitions of these satellite reflections along the c*-axis were
rationalized by introducing an additional misfit param-
eter & = 0.090 that coexists with the misfit parameter
~v = 0.418 at ambient pressure [11,36,38,42] (note that the
value v = 0.428 has been reported at the higher pressure of
0.5 GPa [38]), necessitating the description of the symme-
try properties of phase IT in terms of a (34 2)-dimensional
superspace. In phase III, reflections for which h+k is odd,
attributed to the loss of C-centering of the orthorhombic
unit cell, were observed both for main reflections and for
satellite reflections.

These observations raise a seemingly impossible physical
conundrum: how does the material undergo a phase tran-
sition (from phase I to phase II) involving a change in the
inter-modulation of the two substructures (i.e., the loss
of C-centering) that is not reflected by a corresponding
change in the basic host structure or the basic guest struc-
ture (for which C-centering is retained), particularly as it
is the interactions between the two basic structures that
ultimately cause the incommensurate inter-modulations?

The (3 + 2)-dimensional superspace groups pro-
posed [38,42] for phase II and phase III were C2224(00+)
(106) and P2;2121(007)(006), respectively, with five in-
dependent indices (h, k, I, m, n) required to index each
reflection:

Qhklmn =ha* +k b +1 cﬁost +m c;uest +n ci*'

(2)

The indices m and n relate to v and &, respectively, with
c;;uest =7 czost and CT = 5crlost'

Similar results were later reported [39] for n-
hexadecane/urea, with phase I assigned to the (3 4 1)-
dimensional superspace group P6;22(00y). However, in
contrast to n-nonadecane/urea, phase IT was reported to
exhibit main reflections (i.e., (h, k, I, m) with [ = 0
and/or m = 0) with h + &k odd, but not to exhibit
satellite reflections (i.e., (h, k, I, m) with [ # 0 and
m # 0) with A + k odd, and phase II was described by
the (3 + 1)-dimensional superspace group P21212;(00)
with v = 0.486. In phase III, many satellite reflections
were observed with A + k& odd and were indexed in the
(3 4 2)-dimensional superspace group P2;2121(00+)(006),
involving the additional misfit parameter § = 0.058 coex-
isting with the misfit parameter v along the c-axis [39].

In the present paper, we develop alternative interpre-
tations of the superspace group descriptions and phase
transitions in n-nonadecane/urea and n-hexadecane/urea,
based in part on a high-resolution synchrotron single-
crystal X-ray diffraction study of m-nonadecane/urea.

Significantly, we demonstrate that (3 4+ 1)-dimensional
superspace groups are sufficient to provide a complete
description of the symmetry properties of the low-
temperature phases, in contrast to the un-necessarily elab-
orate (342)-dimensional superspace descriptions proposed
previously [11,36-42].

First, we consider the assertion [36,38,42] that a (34 2)-
dimensional superspace group representation is required to
describe the symmetry properties of the low-temperature
phases of n-nonadecane/urea (phases II and III) and n-
hexadecane/urea (phase III). For n-nonadecane/urea, the
temperature-independent misfit parameters were deter-
mined [36,38,42] to be v = 0.418 and § = 0.090 at
ambient pressure. The X-ray diffraction data for n-
nonadecane/urea recorded in the present work can also
be indexed on the basis of the same (3 + 2)-dimensional
description, with the same values of the misfit parameters
~ and §. However, on careful consideration of the index-
ing of reflections according to the (3 4 2)-dimensional su-
perspace group representation, we have recognized that a
simple relation actually exists between the values of the
two misfit parameters y and 9, specifically: —2+45v = 4. It
then follows that the reciprocal lattice basis vectors cj
Chuest and ¢ (see eq. (2)) are actually related by

(3)

On this basis, it is sufficient to describe the reciprocal
space completely using a (3 + 1)-dimensional superspace
description, with the following relationships between the
indices in the (3+2)-dimensional (h, k, [, m, n) and (3+1)-
dimensional (h, k, I, m') superspace descriptions:

* * *
¢ = 72chost + 5cguest'

I'!=1-2n and m' =m + 5n. (4)

In the case of n-hexadecane/urea at ambient pressure,
the superspace groups assigned previously [39] to phase II
and phase ITT were P212121(007) and P272,2;(007)(004),
respectively, and the temperature-independent misfit pa-
rameters were reported [39] to be v = 0.486 and 6 = 0.058.
Again, within experimental errors, we have identified a
simple relation between ~ and 4, in particular: 24y = §.
Within the (3 + 2)-dimensional superspace description for
phase III, the reciprocal lattice basis vectors cj ., €
and ¢f (see eq. (2)) are actually related by

*
guest

CT - QCEOSt —4c (5)
Again, a (341)-dimensional superspace description is suffi-
cient, with the following relationships between the indices
in the (3 + 2)-dimensional (h, k, I, m, n) and (3 + 1)-
dimensional (h, k, I, m') superspace descriptions:

*
guest*

U!=142n and m' =m — 4n.

(6)

These simple relationships suggest that, for the low-
temperature phases of both n-hexadecane/urea and n-
nonadecane/urea, the (3 + 2)-dimensional superspace
group descriptions are not necessary.
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Fig. 2: (Colour online) One-dimensional l-scans through re-
ciprocal space for n-nonadecane/urea at 147 K (phase II) with
(a) h = 3, k = =2, and (b) h = 3, k = 1. The position
(q) along the c*-axis is given as ¢ = lmeas Chiosi- Lhe major
observed reflections are labelled by the (I', m’) indices in the
(3 + 1)-dimensional superspace description.

In our single-crystal X-ray diffraction study of
n-nonadecane/urea, data were recorded for phase II at
147K (i.e., just below the I+»II transition temperature
T, = 157K [59]) and for phase IIT at 100K (i.e., well be-
low the II+III transition temperature To = 140K [59]).
Representative one-dimensional [-scans through recipro-
cal space, parallel to the cf ; and ¢, axes, are shown
for phase II in fig. 2 and for phase III in fig. 3 (all I-scans
were determined, using standard data analysis techniques,
from experimental measurements of the complete recipro-
cal space; see the “Experimental details” section). For
the l-scan shown in fig. 2(a), the indexing of the reflec-
tions based on both the (3 +2)-dimensional (h, k, I, m, n)
and (3+1)-dimensional (h, k, I', m’) superspace descrip-
tions is specified in table 1, verifying that all reflections
are correctly indexed in the (3+1)-dimensional superspace
description.

For phase II, surprisingly, the most intense peaks in
the scan with h + k odd (fig. 2(a)) correspond to satellite
reflections; significantly, however, weak main reflections of
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Fig. 3: (Colour online) One-dimensional I-scans through recip-
rocal space for n-nonadecane/urea at 100 K (phase III) with
(a) h = =3, k = =2, and (b) h = 3, k = 1. The position
(q) along the c¢*-axis is given as ¢ = lmeas Chog;- The major
observed reflections are labelled by the (I', m’) indices in the
(3 + 1)-dimensional superspace description.

both (h, k, I’, 0) and (h, k, 0, m’) types are also observed.
In the scan with h 4+ k even (fig. 2(b)), main reflections of
both (h, k, I’, 0) and (h, k, 0, m’) types are observed, as
well as satellite reflections (h, k, I, m’) with I’ # 0 and
m’ # 0.

For phase III, the corresponding scans with h + k£ odd
(fig. 3(a)) or h + k even (fig. 3(b)) reveal a significant
increase in the intensities of the main reflections of both
(h, k, ', 0) and (h, k, 0, m") types, but there are no marked
changes in the intensities of the satellite reflections.

The major difference between our data and those re-
ported previously [36,38,42] is that, in phase II, we ob-
serve main reflections of both (h, k, I’, 0) and (h, k, O,
m’) types with h + k odd, although, as noted above, we
emphasize that the main reflections with h + k odd gen-
erally have lower intensities than the satellite reflections
with the same h and k values. Clearly, we conclude that,
on passing from phase I to phase II, the C-centering of
the orthohexagonal unit cell is lost for both the basic host
structure and the basic guest structure.

56001-pd
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Referring momentarily to the (3 4+ 2)-dimensional su-
perspace group description, we note that the reflection
condition [60] ((h, k, I, m, n): h+k+mn =2N; N =
integer) for the superspace group €2224(00v)(106) pro-
posed previously [38,42] for phase II of n-nonadecane/urea
is not supported by our X-ray diffraction data. For ex-
ample, the satellite reflections indexed in the (3 + 2)-
dimensional system as (3,—2,0,0,2) and (3,-2,0,1,—2),
which should be absent for superspace group €2224(00+)
(106), are clearly observed in our X-ray diffraction data.
These reflections correspond (using the relations in eq. (4))
to (3,—2,—4,10) and (3,—2,4,—9), respectively, in the
(3 + 1)-dimensional description used to index the reflec-
tions in fig. 2(a).

In the frame of the (3 + 2)-dimensional superspace
proposed previously for n-nonadecane/urea [38,42], the
observed reflections in phase Il are actually compati-
ble with superspace group P2;2,2;(007)(006) [60], rather
than superspace group (€222;(007)(105). We note that
P2,2,21(007)(006) is the same superspace group as phase
III, and is a subgroup of C'222;(00v)(106) [29].

However, as we have already shown that a (3 4+ 1)-
dimensional superspace is sufficient to describe the sym-
metry properties of these incommensurate materials,
we propose that, for both n-nonadecane/urea and n-
hexadecane/urea, phase II and phase IIT are both fully
described by the (3 + 1)-dimensional superspace group
P212121(007). For each material, the primary difference
between phase II and phase III is that the intensities of
the main reflections ((h, k, I, 0) and (h, k, 0, m’)) and the
satellite reflections ((h, k, I’, m') with I’ # 0 and m' # 0)
have significantly different temperature dependences when
h + k is odd.

We emphasize that our conclusions are fully corrob-
orated by the analysis of several other one-dimensional
I-scans for phases IT and IIT of n-nonadecane/urea, in ad-
dition to those shown in figs. 2 and 3. We also note that
most reflections in table 1 have large values of the indices
(I’, m') in the (3 4 1)-dimensional superspace description,
whereas the values of the indices (I, m, n) in the (3 + 2)-
dimensional superspace description are smaller. Examples
of incommensurate systems with high indices for satellite
reflections arise when the modulation function becomes
discontinuous and a non-analytic “soliton regime” can ex-
ist, allowing higher harmonics to be observed [61,62]. Im-
portantly, in the present case, the modulation function
is discontinuous by construction, as it is interrupted by
the specific periodic CHs- - -H3C interactions that exist be-
tween the ends of adjacent n-alkane guests.

In contrast to our (3 + 1)-dimensional superspace, we
emphasize that the (3 + 2)-dimensional superspace gives a
huge number of possible solutions for indexing each exper-
imentally observed reflection. For example, the reflection
observed in fig. 2(a) (see table 1) at lmeas = 0.914
is indexed unambiguously and uniquely in our (3 + 1)-
dimensional superspace as (3,—2,3,—5), with lcaec =
0.910, but can be indexed in the (3 + 2)-dimensional

Table 1: Comparison of the measured Imeas (extracted from the
data in fig. 2(a)) and calculated lcaic positions along the ¢*-axis
for all significant reflections in the one-dimensional reciprocal-
space scan at h = 3 and k = —2 for n-nonadecane/urea at
147 K (phase II). The position (q) along the ¢*-axis is given as
@ = lmeas Chost OF @ = lcale Cliost- The indexing (3, -2, I, m’)
in the (3+ 1)-dimensional superspace and (3, —2, 1, m,n) in the
(3 4+ 2)-dimensional superspace are specified. The calculated
values lcaic are determined from the set of indices (l/, m’) or
(I, m, n) using learc =" +ym’ =1+ ~ym + dn. For the (3 + 2)-
dimensional superspace, the assignment of indices (I,m,n) is
not unique (see text), and only the set of indices of lowest value
is reported here.

lmeas lcale (ll; ml) (l7m7n)
0.095 0.090 (—2,5) (0, 0, 1)
0.189 0.180 (—4,10) (0,0, 2)
0.232 0.238 (4, 79) (0, 1, 72)
0.327 0.328 (2, 74) (0, 1, 71)
0.914 0.910 (3, —5) (1, 0,—1)
0.999 1.000 (1, O) (1, 0, 0)
1.093 1.090 (—1,5) (1, 0, 1)
1.913 1.910 (4,75) (2, 0,71)
2.922 2.926 (0, 7) (2, 2, 1)
2.996 3.000 (3, O) (3, 0, 0)
3.090 3.090 (1, 5) (3, 0, 1)

superspace by any of the reflections (3,-2,1,0,—1),
(3,-2,3,-5,0), (3,-2,—-1,5,—-2) or (3,—2,5,—10,1),
etc., all of which give the same value of ... = 0.910.
Clearly, such ambiguity and non-uniqueness in the index-
ing of reflections is another unsatisfactory feature of the
(3 4 2)-dimensional superspace description.

In conclusion, we have shown that rationalization
of the diffraction patterns of m-nonadecane/urea and
n-hexadecane/urea inclusion compounds in their low-
temperature phases does not require the introduction of
a fifth dimension in superspace, as proposed previously,
and does not require new concepts, such as “hidden de-
grees of freedom in superspace” [36], to be invented. As
a consequence, the temperature-independent misfit pa-
rameter v is the only aperiodicity in these materials,
and, furthermore, the misfit parameter v is a common
feature in all phases. The most probable mechanism
responsible for the phase transitions is then related to
“classical” degrees of freedom of the rigid n-alkane guest
molecules inside the urea tunnels (i.e., reorientational mo-
tions of the guest molecules about the host tunnel axis
(orientational ordering) and translational motions of the
guest molecules along this axis), resulting in a model of
pseudo-spin translation-rotation coupling which was al-
ready suggested several years ago [58]. Indeed, simple
group theoretical considerations show that, in the present
case, two different order parameters are necessary. One
order parameter belongs to the Es irreducible represen-
tation at the zone centre of the Brillouin zone (I'-point),
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responsible for the strong orthorhombic distortion, and
the other order parameter belongs to the Ms representa-
tion at the Brillouin zone boundary M-point, responsible
for the loss of C-centering in the orthorhombic phases [63].
In the frame of a translation-rotation coupling model, con-
venient pseudo-spin coordinates at the I' and/or M points
describing reorientational ordering coupled to the transla-
tional motions of the guest molecules at the M-point must
be considered as order parameters. Importantly, different
couplings between these variables may explain the differ-
ences observed in the phase transition sequences between
n-nonadecane/urea and n-hexadecane/urea. The devel-
opment of this model will be presented in a forthcoming

paper.

Experimental details. — Crystals of the n-
nonadecane/urea inclusion compound were prepared
by the following method. An excess of n-nonadecane
was added to a saturated solution of urea in methanol
in a conical flask at 55°C. 2-Methyl-2-butanol was then
added dropwise until the solution was homogeneous. Any
precipitate formed at this stage was dissolved by further
addition of the minimum amount of methanol required for
complete dissolution. The flask was stoppered and placed
inside an incubator, which was cooled slowly from 55°C
to 0°C. The crystals formed were collected by filtration
and washed with 2, 2, 4-trimethylpentane (to remove any
n-nonadecane adhering to their external surfaces).

Single-crystal X-ray diffraction data were recorded for
n-nonadecane/urea on beamline 119 (EH1) at Diamond
Light Source, with temperature controlled by an Ox-
ford Cryosystems Cryostream Plus open-flow nitrogen gas
cryostat. The data were measured using a Rigaku Crystal
Logic Kappa goniometer with a Saturn 724+ detector at
the zirconium absorption edge (A = 0.6889 A). At 180 K,
147K and 100K, a full sphere of data to a resolution of
0.8 A was collected with a scan width of 0.3°. At ambient
temperature, only indexing frames were collected. Raw
frame data were processed using CrysAlisPro from Agi-
lent Technologies (now Rigaku Oxford Diffraction). For
the data recorded at 147K (phase II) and 100K (phase
I1I), after peak hunting and indexing, a unit cell with or-
thorhombic metric symmetry (a ~ 14.1A, b ~ 8.15A4,
¢~ 10.99 A) was used (with some variation in unit cell
parameters at the different temperatures). From the col-
lected data, reconstructed precession images were gener-
ated for the regions of reciprocal space of interest. To
generate one-dimensional /-scans through reciprocal space
along the ¢*-axis (as shown in figs. 2 and 3), an appropri-
ate hkl layer in reciprocal space (with one of the values
of h or k fixed) was reconstructed to a resolution of 2 A
or 3A. From the reconstructed layer, a line drag was
performed (using CrysAlisPro) at fixed h and k, moving
from positive to negative values of [, giving a continuous
plot of intensity vs. {. Within these reconstructed [-scans,
the spacing between adjacent digitized data points cor-
responds to Al ~ 0.01 for fig. 2(a) and Al ~ 0.007 for

fig. 2(b), 3(a) and 3(b); thus, the experimental error in
assessing the positions of peak maxima in these [-scans is
of the order of 6/ = +0.005 and 6/ = 4+0.0035, respectively.
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