|
Open Access
Abstract: This is a focused review of recent highlights in the literature in cathode development for low temperature electrochemical carbon dioxide and carbon monoxide reduction to multi-carbon (C2+) products. The major goals for the field are to increase Faradaic efficiency (FE) for specific C2+ products, lower cell voltage for industrially relevant current densities and increase cell lifetime. A key to achieving these goals is the rational design of cathodes through increased understanding of structure-selectivity and structure-activity relationships for catalysts and the influence of catalyst binders and gas diffusion layers (GDLs) on the catalyst microenvironment and subsequent performance.
|
Jan 2023
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[20354]
Abstract: This paper describes the effect of composition on the catalytic activity of carbon-supported Pt-Pb, Pt-Rh, and Pt-Rh-Pb catalysts towards ethanol oxidation in acid media. The catalysts were synthesised by a polyol reduction method and characterised using several experimental techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray absorption near edge structure, and X-ray energy dispersive spectroscopy. The catalytic activity towards ethanol oxidation was evaluated by cyclic voltammetry, chronoamperometry, and in situ Fourier transform infrared spectroscopy (FTIR) experiments. XRD data indicate the presence of Pb in both alloyed and oxide forms. TEM images reveal nanoparticles well-dispersed on the carbon support, with spherical shapes and particle sizes around 2.0–6.5 nm. The Pt3RhPb/C catalyst showed the highest catalytic activity for ethanol oxidation, reaching current densities 6.0 times higher than the commercial Pt/C catalyst. The trimetallic catalyst showed the highest CO2 and acetic acid formation, explaining the higher current densities presented during cyclic voltammetry and chronoamperometry. Additionally, since the oxidation appears to follow a non-selective path, the role of Pb in the trimetallic catalyst is not related to driving the reaction towards the production of CO2. The improvement in catalytic activity occurred due to the synergy between the metals.
|
Aug 2022
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[21533]
Open Access
Abstract: The electrochemical conversion of carbon dioxide (CO2) to useful chemical fuels is a promising route toward the achievement of carbon neutral and carbon negative energy technologies. Copper (Cu)- and Cu oxide-derived surfaces are known to electrochemically convert CO2 to high-value and energy-dense products. However, the nature and stability of oxidized Cu species under reaction conditions are the subject of much debate in the literature. Herein, we present the synthesis and characterization of copper-titanate nanocatalysts, with discrete Cu–O coordination environments, for the electrochemical CO2 reduction reaction (CO2RR). We employ real-time in situ X-ray absorption spectroscopy (XAS) to monitor Cu species under neutral-pH CO2RR conditions. Combination of voltammetry and on-line electrochemical mass spectrometry with XAS results demonstrates that the titanate motif promotes the retention of oxidized Cu species under reducing conditions for extended periods, without itself possessing any CO2RR activity. Additionally, we demonstrate that the specific nature of the Cu–O environment and the size of the catalyst dictate the long-term stability of the oxidized Cu species and, subsequently, the product selectivity.
|
Jan 2022
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[19850]
Abstract: The bifunctional mechanism is well-acknowledged for the promoted CO oxidation on Pt-based bimetallic electrocatalysts. However, the direct identification of the active oxygenated species and the nature and electrochemistry of the second component are still a matter of debate. Herein, Snad-Pt/C catalysts, where Sn ad-atoms are exclusively on the surface of Pt nanoparticles at low coverages ranging from 0.0033 to 0.2 monolayers to avoid sub-surface Sn and alloy formation, were prepared as a model system to resolve these issues using a surface organometallic chemistry approach. Effects of the Sn ad-atoms on CO oxidation were studied by CO stripping voltammograms as a function of Sn coverage. Using in situ XAS measurements, the Sn average oxidation state is estimated to increase from +0.2 to +3.1 as the potential increases from 0 to 0.8 VRHE, with the number of the oxygen neighbours increasing stepwise. Pt4.5-Sn-(OH)1.5 is revealed as the active species responsible for the bifunctional mechanism at low overpotentials and is generated via a redox couple corresponding to Pt4.5-Sn*/Pt4.5-Sn-(OH)1.5.
|
Jun 2021
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[15151]
Abstract: Pt-Sn bimetallic catalysts, especially Pt-Sn alloys, are considered highly CO-tolerant and are thus candidates for reformate derived hydrogen oxidation and for direct oxidation of fuel cell molecules. However, it remains unclear if this CO-tolerance originates from Sn in the Pt-Sn alloy or whether SnO 2 , present as a separate phase, also contributes. In this work, a carbon-supported Pt-SnO 2 was carefully synthesized to avoid the formation of Pt-Sn alloy phases. The resulting structure was analysed by scanning transmission electron microscopy (STEM) and detailed X-ray absorption spectroscopy (XAS). CO oxidation voltammograms of the Pt-SnO 2 /C and other SnO 2 -modified Pt surfaces unambiguously suggest that a bifunctional mechanism is indeed operative at such Pt-SnO 2 catalysts for stable CO oxidation at low overpotentials. The results from these studies suggest that the bifunctional mechanism can be attributed to the co-catalysis role of SnO 2 , in which the surface hydroxide of SnO 2 (Sn-OH) reacts with CO adsorbed on Pt surface (Pt-CO ads ) and regenerates via a Sn II /Sn IV reversible redox couple (-0.2–0.3 V vs. reversible hydrogen electrode).
|
Jun 2021
|
|
|
John
Irvine
,
Jennifer
Rupp
,
Gang
Liu
,
Xiaoxiang
Xu
,
Sossina M
Haile
,
Xin
Qian
,
Alem
Snyder
,
Robert
Freer
,
Dursun
Ekren
,
Stephen
Skinner
,
Ozden
Celikbilek
,
Shigang
Chen
,
Shanwen
Tao
,
Tae Ho
Shin
,
Ryan
O'Hayre
,
Jake
Huang
,
Chuancheng
Duan
,
Meagan
Papac
,
Shuangbin
Li
,
Andrea
Russell
,
Veronica
Celorrio
,
Brian
Hayden
,
Hugo
Nolan
,
Xiubing
Huang
,
Ge
Wang
,
Ian
Metcalfe
,
Dragos
Neagu
,
Susana Garcia
Martin
Open Access
Abstract: Inorganic perovskites exhibit many important physical properties such as ferroelectricity, magnetoresistance and superconductivity as well their importance as Energy Materials. Many of the most important energy materials are inorganic perovskites and find application in batteries, fuel cells, photocatalysts, catalysis, thermoelectrics and solar thermal. In all these applications, perovskite oxides, or their derivatives offer highly competitive performance, often state of the art and so tend to dominate research into energy material. In the following sections, we review these functionalities in turn seeking to facilitate the interchange of ideas between domains. The potential for improvement is explored and we highlight the importance of both detailed modelling and in situ and operando studies in taking these materials forward.
|
May 2021
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[10306, 19850]
Open Access
Abstract: Understanding the surface structure of bimetallic nanoparticles is crucial for heterogeneous catalysis. Although surface contraction has been established in monometallic systems, less is known for bimetallic systems, especially of nanoparticles. In this work, the bond length contraction on the surface of bimetallic nanoparticles is revealed by XAS in H2 at room temperature on dealloyed Pt–Sn nanoparticles, where most Sn atoms were oxidized and segregated to the surface when measured in air. The average Sn–Pt bond length is found to be ∼0.09 Å shorter than observed in the bulk. To ascertain the effect of the Sn location on the decrease of the average bond length, Pt–Sn samples with lower surface-to-bulk Sn ratios than the dealloyed Pt–Sn were studied. The structural information specifically from the surface was extracted from the averaged XAS results using an improved fitting model combining the data measured in H2 and in air. Two samples prepared so as to ensure the absence of Sn in the bulk were also studied in the same fashion. The bond length of surface Sn–Pt and the corresponding coordination number obtained in this study show a nearly linear correlation, the origin of which is discussed and attributed to the poor overlap between the Sn 5p orbitals and the available orbitals of the Pt surface atoms.
|
May 2021
|
|
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Diamond Proposal Number(s):
[16479]
Open Access
Abstract: In situ X-ray absorption and emission spectroscopies (XAS and XES) are used to provide details regarding the role of the accessibility and extent of redox activity of the Mn ions in determining the oxygen reduction activity of LaMnO3 and CaMnO3, with X-ray absorption near-edge structure (XANES) providing the average oxidation state, extended X-ray absorption fine structure (EXAFS) providing the local coordination environment, and XES providing the population ratios of the Mn2+, Mn3+, and Mn4+ sites as a function of the applied potential. For LaMnO3, XANES and XES show that Mn3+ is formed, but Mn4+ ions are retained, which leads to the 4e– reduction between 0.85 and 0.6 V. At more negative potentials, down to 0.2 V, EXAFS confirms an increase in oxygen vacancies as evidenced by changes in the Mn–O coordination distance and number, while XES shows that the Mn3+ to Mn4+ ratio increases. For CaMnO3, XANES and XES show the formation of both Mn3+ and Mn2+ as the potential is made more negative, with little retention of Mn4+ at 0.2 V. The EXAFS for CaMnO3 also indicates the formation of oxygen vacancies, but in contrast to LaMnO3, this is accompanied by loss of the perovskite structure leading to structural collapse. The results presented have implications in terms of understanding of both the pseudocapacitive response of Mn oxide electrocatalysts and the processes behind degradation of the activity of the materials.
|
May 2021
|
|
I20-EDE-Energy Dispersive EXAFS (EDE)
|
Andrew S.
Leach
,
Jennifer
Hack
,
Monica
Amboage
,
Sofia
Diaz-Moreno
,
Haoliang
Huang
,
Patrick L.
Cullen
,
Martin
Wilding
,
Emanuele
Magliocca
,
Thomas
Miller
,
Christopher
Howard
,
Daniel
Brett
,
Paul
Shearing
,
Paul F.
Mcmillan
,
Andrea E.
Russell
,
Rhodri
Jervis
Diamond Proposal Number(s):
[22008, 15650]
Open Access
Abstract: A polymer electrolyte fuel cell (PEFC) has been designed to allow operando X-ray absorption spectroscopy (XAS) measurements of catalysts. The cell has been developed to operate under standard fuel cell conditions, with elevated temperatures and humidification of the gas-phase reactants, both of which greatly impact the catalyst utilisation. X-ray windows in the endplates of the cell facilitate collection of XAS spectra during fuel cell operation while maintaining good compression in the area of measurement. Results of polarisation curves and cyclic voltammograms (CVs) showed that the operando cell performs well as a fuel cell, while also providing XAS data of suitable quality for robust XANES analysis. The cell has produced comparable XAS results when performing a cyclic voltammogram to an established in situ cell when measuring the Pt LIII edge. Similar trends of Pt oxidation, and reduction of the formed Pt oxide, have been presented with a time resolution of 5 seconds for each spectrum, paving the way for time-resolved spectral measurements of fuel cell catalysts in a fully-operating fuel cell.
|
May 2021
|
|
B18-Core EXAFS
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Yayun
Pu
,
Veronica
Celorrio
,
Jöerg M.
Stockmann
,
Oded
Sobol
,
Zongzhao
Sun
,
Wu
Wang
,
Matthew J.
Lawrence
,
Jörg
Radnik
,
Andrea E.
Russell
,
Vasile-Dan
Hodoroaba
,
Limin
Huang
,
Paramaconi
Rodriguez
Diamond Proposal Number(s):
[21659, 19850]
Abstract: Low cost, high-efficient catalysts for water splitting can be potentially fulfilled by developing earth abundant metal oxides. In this work, surface galvanic formation of Co-OH on K0.45MnO2 (KMO) was achieved via the redox reaction of hydrated Co2+ with crystalline Mn4+. The synthesis method takes place at ambient temperature without using any surfactant agent or organic solvent, providing a clean, green route for the design of highly efficient catalysts. The redox reaction resulted in the formation of ultrathin Co-OH nanoflakes with high electrochemical surface area. X-ray adsorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) analysis confirmed the changes in the oxidation state of the bulk and surface species on the Co-OH nanoflakes supported on the KMO. The effect of the anions, chloride, nitrate and sulfate, on the preparation of the catalyst was evaluated by electrochemical and spectrochemical means. XPS and Time of flight secondary ion mass spectrometry (ToF-SIMS) analysis demonstrated that the layer of CoOxHy deposited on the KMO and its electronic structure strongly depends on the anion of the precursor used during the synthesis of the catalyst. In particular, it was found that Cl favors the formation of Co-OH, changing the rate determining step of the reaction, which enhances the catalytic activity towards the OER, producing the most active OER catalyst in alkaline media.
|
Mar 2021
|
|