I24-Microfocus Macromolecular Crystallography
|
Shangwen
Luo
,
Xin-Rong
Li
,
Xiao-Tong
Gong
,
Alexey
Kulikovsky
,
Feng
Qu
,
Konstantinos
Beis
,
Konstantin
Severinov
,
Svetlana
Dubiley
,
Xinxin
Feng
,
Shi-Hui
Dong
,
Satish K.
Nair
Abstract: Infections caused by gram-negative pathogens continue to be a major risk to human health because of the innate antibiotic resistance endowed by their unique cell membrane architecture. Nature has developed an elegant solution to target gram-negative strains, namely by conjugating toxic antibiotic warheads to a suitable carrier to facilitate the active import of the drug to a specific target organism. Microcin C7 (McC) is a Trojan horse peptide–conjugated antibiotic that specifically targets enterobacteria by exploiting active import through oligopeptide transport systems. Here, we characterize the molecular mechanism of McC recognition by YejA, the solute binding protein of the Escherichia coli oligopeptide transporter. Structure-guided mutational and functional analysis elucidates the determinants of substrate recognition. We demonstrate that the peptide carrier can serve as a passport for the entry of molecules that are otherwise not taken into E. coli cells. We show that peptide conjugation can remodel the antibiotic spectrum of clinically relevant parent compounds. Bioinformatics analysis reveals a broad distribution of YejA-like transporters in only the Proteobacteria, underscoring the potential for the development of Trojan horse antibiotics that are actively imported into such gram-negative bacteria.
|
Jan 2025
|
|
Krios I-Titan Krios I at Diamond
|
Diamond Proposal Number(s):
[25127]
Open Access
Abstract: Conjugation plays a major role in dissemination of antimicrobial resistance genes. Following transfer of IncF-like plasmids, recipients become refractory to a second wave of conjugation with the same plasmid via entry (TraS) and surface (TraT) exclusion mechanisms. Here, we show that TraT from the pKpQIL and F plasmids (TraTpKpQIL and TraTF) exhibits plasmid surface exclusion specificity. The cryo-EM structures of TraTpKpQIL and TraTF reveal that they oligomerise into decameric champagne bottle cork-like structures, which are anchored to the outer membrane via a diacylglycerol and palmitic acid modified α-helical barrel domain. Unexpectedly, we identify chromosomal TraT homologues from multiple Gram-negative phyla which form numerous divergent lineages in a phylogenetic tree of TraT sequences. Plasmid-associated TraT sequences are found in multiple distinct lineages, including two separate clades incorporating TraT from Enterobacteriaceae IncF/F-like and Legionellaceae F-like plasmids. These findings suggest that different plasmid backbones have acquired and co-opted TraT on independent occasions.
|
Jan 2025
|
|
I23-Long wavelength MX
|
Yishun
Lu
,
Ramona
Duman
,
James
Beilsten-Edmands
,
Graeme
Winter
,
Mark
Basham
,
Gwyndaf
Evans
,
Jos J. A. G.
Kamps
,
Allen M.
Orville
,
Hok-Sau
Kwong
,
Konstantinos
Beis
,
Wesley
Armour
,
Armin
Wagner
Open Access
Abstract: rocessing of single-crystal X-ray diffraction data from area detectors can be separated into two steps. First, raw intensities are obtained by integration of the diffraction images, and then data correction and reduction are performed to determine structure-factor amplitudes and their uncertainties. The second step considers the diffraction geometry, sample illumination, decay, absorption and other effects. While absorption is only a minor effect in standard macromolecular crystallography (MX), it can become the largest source of uncertainty for experiments performed at long wavelengths. Current software packages for MX typically employ empirical models to correct for the effects of absorption, with the corrections determined through the procedure of minimizing the differences in intensities between symmetry-equivalent reflections; these models are well suited to capturing smoothly varying experimental effects. However, for very long wavelengths, empirical methods become an unreliable approach to model strong absorption effects with high fidelity. This problem is particularly acute when data multiplicity is low. This paper presents an analytical absorption correction strategy (implemented in new software AnACor) based on a volumetric model of the sample derived from X-ray tomography. Individual path lengths through the different sample materials for all reflections are determined by a ray-tracing method. Several approaches for absorption corrections (spherical harmonics correction, analytical absorption correction and a combination of the two) are compared for two samples, the membrane protein OmpK36 GD, measured at a wavelength of λ = 3.54 Å, and chlorite dismutase, measured at λ = 4.13 Å. Data set statistics, the peak heights in the anomalous difference Fourier maps and the success of experimental phasing are used to compare the results from the different absorption correction approaches. The strategies using the new analytical absorption correction are shown to be superior to the standard spherical harmonics corrections. While the improvements are modest in the 3.54 Å data, the analytical absorption correction outperforms spherical harmonics in the longer-wavelength data (λ = 4.13 Å), which is also reflected in the reduced amount of data being required for successful experimental phasing.
|
Jun 2024
|
|
Krios I-Titan Krios I at Diamond
|
Diamond Proposal Number(s):
[25127]
Open Access
Abstract: Multidrug resistance-associated protein 2 (MRP2/ABCC2) is a polyspecific efflux transporter of organic anions expressed in hepatocyte canalicular membranes. MRP2 dysfunction, in Dubin-Johnson syndrome or by off-target inhibition, for example by the uricosuric drug probenecid, elevates circulating bilirubin glucuronide and is a cause of jaundice. Here, we determine the cryo-EM structure of rat Mrp2 (rMrp2) in an autoinhibited state and in complex with probenecid. The autoinhibited state exhibits an unusual conformation for this class of transporter in which the regulatory domain is folded within the transmembrane domain cavity. In vitro phosphorylation, mass spectrometry and transport assays show that phosphorylation of the regulatory domain relieves this autoinhibition and enhances rMrp2 transport activity. The in vitro data is confirmed in human hepatocyte-like cells, in which inhibition of endogenous kinases also reduces human MRP2 transport activity. The drug-bound state reveals two probenecid binding sites that suggest a dynamic interplay with autoinhibition. Mapping of the Dubin-Johnson mutations onto the rodent structure indicates that many may interfere with the transition between conformational states.
|
Mar 2024
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[23620]
Open Access
Abstract: Conjugation is the process by which plasmids, including those that carry antibiotic-resistance genes, are mobilized from one bacterium (the donor) to another (the recipient). The conjugation efficiency of IncF-like plasmids relies on the formation of mating-pair stabilization via intimate interactions between outer membrane proteins on the donor (a plasmid-encoded TraN isoform) and recipient bacteria. Conjugation of the R100-1 plasmid into Escherichia coli and Klebsiella pneumoniae (KP) recipients relies on pairing between the plasmid-encoded TraNα in the donor and OmpW in the recipient. Here, the crystal structure of K. pneumoniae OmpW (OmpWKP) is reported at 3.2 Å resolution. OmpWKP forms an eight-stranded β-barrel flanked by extracellular loops. The structures of E. coli OmpW (OmpWEC) and OmpWKP show high conservation despite sequence variability in the extracellular loops.
|
Jan 2024
|
|
I03-Macromolecular Crystallography
I23-Long wavelength MX
|
Kamel
El Omari
,
Ramona
Duman
,
Vitaliy
Mykhaylyk
,
Christian M.
Orr
,
Merlyn
Latimer-Smith
,
Graeme
Winter
,
Vinay
Grama
,
Feng
Qu
,
Kiran
Bountra
,
Hok Sau
Kwong
,
Maria
Romano
,
Rosana
Reis
,
Lutz
Vogeley
,
Luca
Vecchia
,
C. David
Owen
,
Sina
Wittmann
,
Max
Renner
,
Miki
Senda
,
Naohiro
Matsugaki
,
Yoshiaki
Kawano
,
Thomas A.
Bowden
,
Isabel
Moraes
,
Jonathan M.
Grimes
,
Erika J.
Mancini
,
Martin A.
Walsh
,
Cristiane R.
Guzzo
,
Raymond J.
Owens
,
E. Yvonne
Jones
,
David G.
Brown
,
Dave I.
Stuart
,
Konstantinos
Beis
,
Armin
Wagner
Open Access
Abstract: Despite recent advances in cryo-electron microscopy and artificial intelligence-based model predictions, a significant fraction of structure determinations by macromolecular crystallography still requires experimental phasing, usually by means of single-wavelength anomalous diffraction (SAD) techniques. Most synchrotron beamlines provide highly brilliant beams of X-rays of between 0.7 and 2 Å wavelength. Use of longer wavelengths to access the absorption edges of biologically important lighter atoms such as calcium, potassium, chlorine, sulfur and phosphorus for native-SAD phasing is attractive but technically highly challenging. The long-wavelength beamline I23 at Diamond Light Source overcomes these limitations and extends the accessible wavelength range to λ = 5.9 Å. Here we report 22 macromolecular structures solved in this extended wavelength range, using anomalous scattering from a range of elements which demonstrate the routine feasibility of lighter atom phasing. We suggest that, in light of its advantages, long-wavelength crystallography is a compelling option for experimental phasing.
|
Oct 2023
|
|
I24-Microfocus Macromolecular Crystallography
|
Indran
Mathavan
,
Lawrence J.
Liu
,
Sean W.
Robinson
,
Nelly
El-Sakkary
,
Adam Jo J.
Elatico
,
Darwin
Gomez
,
Ricky
Nellas
,
Raymond J.
Owens
,
William
Zuercher
,
Iva
Navratilova
,
Conor R.
Caffrey
,
Konstantinos
Beis
Diamond Proposal Number(s):
[12579]
Open Access
Abstract: Schistosomiasis is a neglected tropical disease caused by parasitic flatworms. Current treatment relies on just one partially effective drug, praziquantel (PZQ). Schistosoma mansoni Venus Kinase Receptors 1 and 2 (SmVKR1 and SmVKR2) are important for parasite growth and egg production, and are potential targets for combating schistosomiasis. VKRs consist of an extracellular Venus Flytrap Module (VFTM) linked via a transmembrane helix to a kinase domain. Here, we initiated a drug discovery effort to inhibit the activity of the SmVKR2 kinase domain (SmVKR2KD) by screening the GSK published kinase inhibitor set 2 (PKIS2). We identified several inhibitors, of which four were able to inhibit its enzymatic activity and induced phenotypic changes in ex vivoS. mansoni. Our crystal structure of the SmVKR2KD displays an active-like state that sheds light on the activation process of VKRs. Our data provide a basis for the further exploration of SmVKR2 as a possible drug target.
|
Oct 2022
|
|
I03-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Sophia
David
,
Joshua L. C.
Wong
,
Julia
Sanchez-Garrido
,
Hok-Sau
Kwong
,
Wen Wen
Low
,
Fabio
Morecchiato
,
Tommaso
Giani
,
Gian Maria
Rossolini
,
Stephen J.
Brett
,
Abigail
Clements
,
Konstantinos
Beis
,
David M.
Aanensen
,
Gad
Frankel
Diamond Proposal Number(s):
[23620]
Open Access
Abstract: Mutations in outer membrane porins act in synergy with carbapenemase enzymes to increase carbapenem resistance in the important nosocomial pathogen, Klebsiella pneumoniae (KP). A key example is a di-amino acid insertion, Glycine-Aspartate (GD), in the extracellular loop 3 (L3) region of OmpK36 which constricts the pore and restricts entry of carbapenems into the bacterial cell. Here we combined genomic and experimental approaches to characterise the diversity, spread and impact of different L3 insertion types in OmpK36. We identified L3 insertions in 3588 (24.1%) of 14,888 KP genomes with an intact ompK36 gene from a global collection. GD insertions were most common, with a high concentration in the ST258/512 clone that has spread widely in Europe and the Americas. Aspartate (D) and Threonine-Aspartate (TD) insertions were prevalent in genomes from Asia, due in part to acquisitions by KP sequence types ST16 and ST231 and subsequent clonal expansions. By solving the crystal structures of novel OmpK36 variants, we found that the TD insertion causes a pore constriction of 41%, significantly greater than that achieved by GD (10%) or D (8%), resulting in the highest levels of resistance to selected antibiotics. We show that in the absence of antibiotics KP mutants harbouring these L3 insertions exhibit both an in vitro and in vivo competitive disadvantage relative to the isogenic parental strain expressing wild type OmpK36. We propose that this explains the reversion of GD and TD insertions observed at low frequency among KP genomes. Finally, we demonstrate that strains expressing L3 insertions remain susceptible to drugs targeting carbapenemase-producing KP, including novel beta lactam-beta lactamase inhibitor combinations. This study provides a contemporary global view of OmpK36-mediated resistance mechanisms in KP, integrating surveillance and experimental data to guide treatment and drug development strategies.
|
Jul 2022
|
|
Krios I-Titan Krios I at Diamond
|
Dmitry
Ghilarov
,
Satomi
Inaba-Inoue
,
Piotr
Stepien
,
Feng
Qu
,
Elizabeth
Michalczyk
,
Zuzanna
Pakosz
,
Norimichi
Nomura
,
Satoshi
Ogasawara
,
Graham Charles
Walker
,
Sylvie
Rebuffat
,
So
Iwata
,
Jonathan
Gardiner Heddle
,
Konstantinos
Beis
Diamond Proposal Number(s):
[18659]
Open Access
Abstract: Antibiotic metabolites and antimicrobial peptides mediate competition between bacterial species. Many of them hijack inner and outer membrane proteins to enter cells. Sensitivity of enteric bacteria to multiple peptide antibiotics is controlled by the single inner membrane protein SbmA. To establish the molecular mechanism of peptide transport by SbmA and related BacA, we determined their cryo–electron microscopy structures at 3.2 and 6 Å local resolution, respectively. The structures show a previously unknown fold, defining a new class of secondary transporters named SbmA-like peptide transporters. The core domain includes conserved glutamates, which provide a pathway for proton translocation, powering transport. The structures show an outward-open conformation with a large cavity that can accommodate diverse substrates. We propose a molecular mechanism for antibacterial peptide uptake paving the way for creation of narrow-targeted therapeutics.
|
Sep 2021
|
|
I23-Long wavelength MX
|
Kamel
El Omari
,
Nada
Mohamad
,
Kiran
Bountra
,
Ramona
Duman
,
Maria
Romano
,
Katja
Schlegel
,
Hok-Sau
Kwong
,
Vitaliy
Mykhaylyk
,
Claus
Olesen
,
Jesper Vuust
Moller
,
Maike
Bublitz
,
Konstantinos
Beis
,
Armin
Wagner
Open Access
Abstract: The structure determination of soluble and membrane proteins can be hindered by the crystallographic phase problem, especially in the absence of a suitable homologous structure. Experimental phasing is the method of choice for novel structures; however, it often requires heavy-atom derivatization, which can be difficult and time-consuming. Here, a novel and rapid method to obtain experimental phases for protein structure determination by vanadium phasing is reported. Vanadate is a transition-state mimic of phosphoryl-transfer reactions and it has the advantage of binding specifically to the active site of numerous enzymes catalyzing this reaction. The applicability of vanadium phasing has been validated by determining the structures of three different protein–vanadium complexes, two of which are integral membrane proteins: the rabbit sarcoplasmic reticulum Ca2+-ATPase, the antibacterial peptide ATP-binding cassette transporter McjD from Escherichia coli and the soluble enzyme RNAse A from Bos taurus. Vanadium phasing was successful even at low resolution and despite severe anisotropy in the data. This method is principally applicable to a large number of proteins, representing six of the seven Enzyme Commission classes. It relies exclusively on the specific chemistry of the protein and it does not require any modifications, making it a very powerful addition to the phasing toolkit. In addition to the phasing power of this technique, the protein–vanadium complexes also provide detailed insights into the reaction mechanisms of the studied proteins.
|
Nov 2020
|
|