I12-JEEP: Joint Engineering, Environmental and Processing
|
A.
Koko
,
S.
Singh
,
S.
Barhli
,
T.
Connolley
,
N. T.
Vo
,
T.
Wigger
,
D.
Liu
,
Y.
Fu
,
J.
Réthoré
,
J.
Lechambre
,
J.-Y.
Buffiere
,
T. J.
Marrow
Diamond Proposal Number(s):
[12585]
Open Access
Abstract: The propagation rate of a fatigue crack in a nodular cast iron, loaded in cyclic tension, has been studied in situ by X-ray computed tomography and digital volume correlation. The semi-elliptical crack initiated from an asymmetric corner notch and evolved to a semi-circular shape, initially with a higher growth rate towards one edge of the notch before the propagation rate along the crack front became essentially independent of po-sition. The phase congruency of the displacement field was used to measure the crack shape. The three-dimensional stress intensity factors were calculated via a linear elastic finite element model that used the displacement fields around the crack front as the boundary conditions. Closure of the crack tip region was observed. The cyclic change in the local mode I opening of the crack tip determined the local fatigue crack propaga-tion rate along the crack front.
|
May 2023
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[28804]
Open Access
Abstract: Directed energy deposition (DED) is a promising additive manufacturing technique for repair; however, DED is prone to surface waviness (humping) in thin-walled sections, which increases residual stresses and crack susceptibility, and lowers fatigue performance. Currently, the crack formation mechanism in DED is not well understood due to a lack of operando monitoring methods with high spatiotemporal resolution. Here, we use inline coherent imaging (ICI) to optically monitor surface topology and detect cracking in situ, coupled with synchrotron X-ray imaging for observing sub-surface crack healing and growth. For the first time, ICI was aligned off-axis (24° relative to laser), enabling integration into a DED machine with no alterations to the laser delivery optics. We achieved accurate registration laterally (<10 µm) and in depth (<3 µm) between ICI measurements and the laser beam position using a single-element MEMS scanner and a custom calibration plate. ICI surface topology is verified with corresponding radiographs (correlation >0.93), directly tracking surface roughness and waviness. We intentionally seed humping into thin-wall builds of nickel super-alloy CM247LC, locally inducing cracking in surface valleys. Crack openings as small as 7 µm were observed in situ using ICI, including sub-surface signal. By quantifying both humping and cracking, we demonstrate that ICI is a viable tool for in situ crack detection.
|
Apr 2023
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[16205]
Open Access
Abstract: Methane (CH4) hydrate dissociation and CH4 release are potential geohazards currently investigated using X-ray computed tomography (XCT). Image segmentation is an important data processing step for this type of research. However, it is often time consuming, computing resource-intensive, operator-dependent, and tailored for each XCT dataset due to differences in greyscale contrast. In this paper, an investigation is carried out using U-Nets, a class of Convolutional Neural Network, to segment synchrotron XCT images of CH4-bearing sand during hydrate formation, and extract porosity and CH4 gas saturation. Three U-Net deployments previously untried for this task are assessed: (1) a bespoke 3D hierarchical method, (2) a 2D multi-label, multi-axis method and (3) RootPainter, a 2D U-Net application with interactive corrections. U-Nets are trained using small, targeted hand-annotated datasets to reduce operator time. It was found that the segmentation accuracy of all three methods surpass mainstream watershed and thresholding techniques. Accuracy slightly reduces in low-contrast data, which affects volume fraction measurements, but errors are small compared with gravimetric methods. Moreover, U-Net models trained on low-contrast images can be used to segment higher-contrast datasets, without further training. This demonstrates model portability, which can expedite the segmentation of large datasets over short timespans.
|
Dec 2022
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[28603]
Open Access
Abstract: Small-diameter, thin-walled pipes have applications in a wide range of industries including high-energy physics, heat transfer, nuclear, medical and communications. There are no standards that exist for welds less than 0.5 mm in width, and as such it is difficult to determine the likely performance of a thin-walled pipe weld. Porosity is largely inevitable in fusion welded joints and is a determining factor in the performance of a connection.
This study focused on characterisation of the evolution of strains in soldered welds less than 0.5 mm in width, by incrementally tensile loading samples and studying them in-situ with Synchrotron X-Ray Computed Tomography and X-Ray Diffraction. Two sample geometries were studied, and porosity defects were present in both, although the levels of porosity size, number and area varied dramatically between the two samples.
Lattice strain interpretation showed that crack propagation for such samples is not driven by porosity but that crack evolution occurs at the same location and load levels irrespective of the presence of pores. Residual stresses of up to 0.3% from the fusion welding process were seen in both samples and appear to have a greater impact on locations of failure than porosity. Porosity does cause differences in strains across directions, however high strains alone did not appear to cause premature failure. Hence, efforts to improve weld strength should in future focus more on reducing residual stresses than reducing porosity.
|
Dec 2022
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Chu Lun Alex
Leung
,
Matthew D.
Wilson
,
Thomas
Connolley
,
Stephen P.
Collins
,
Oxana V.
Magdysyuk
,
Matthieu N.
Boone
,
Kosuke
Suzuki
,
Matthew C.
Veale
,
Enzo
Liotti
,
Frederic
Van Assche
,
Andrew
Lui
,
Chun
Huang
Diamond Proposal Number(s):
[23400]
Open Access
Abstract: Increasing electrode thickness is gaining more attention as a potential route to increase energy density for Li ion batteries although the realizable capacity and rate capability are usually limited by Li+ ion diffusion during (dis)charge, especially at increased (dis)charge rates. It remains challenging to visualize and quantify the low atomic number Li+ chemical stoichiometry distribution inside the electrode within commercially standard battery geometry, e.g., coin cells with stainless steel casings. Here, we map the distribution of Li+ chemical stoichiometry in the electrode microstructure inside a working coin cell battery to show the amount of electrode materials contributing to energy storage performance using innovative in situ correlative full-field X-ray Compton scattering imaging (XCS-I) and X-ray computed tomography (XCT). We design and fabricate an ultra-thick (∼1 mm) cathode of LiNi0.8Mn0.1Co0.1O2 with a microstructure containing vertically oriented pore arrays using a directional ice templating method. This novel technique paves a new way to map low atomic number elements in 3D structures and study how the microstructure improves Li+ ion diffusivity and energy storage performance.
|
Dec 2022
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[12585]
Open Access
Abstract: Background: Silicon carbide-fibre/silicon carbide matrix (SiC/SiC) composites are candidate materials for accident toler- ant fuel cladding in light water and advanced gas cooled nuclear fission reactors. The mechanical and damage behaviour of ceramic composites is sensitive to the composite geometry, the microstructure and the loading state. Reliable test methods are needed to investigate the subcritical damage that affects hermetic properties and strength, and this requires precise meas- urements under loading states that are representative of operating conditions.
Objective: The objective was a novel methodology to measure the deformation of an internally pressurised ceramic com- posite tube.
Methods: A burst test of an internally ground SiC/SiC (filament wound and braided) ceramic composite tube, pressurized by radial expansion of a compressed elastomer insert, was observed in situ by high resolution (synchrotron) X-ray tomography. The full field three-dimensional displacements were measured by digital volume correlation, with a precise rotation correc- tion applied to obtain the relative radial and circumferential displacements of the tube wall for the first time.
Results: The hoop strain, and its spatial variations, were determined as a function of the applied hoop stress and showed ovalisation and barreling of the tube. The quantity of subcritical matrix cracking increased with the tensile hoop strain, but the critical crack that caused rupture was not at the location of maximum tensile strain.
Conclusion: Precise measurements of the deformation during the burst test found non-uniform hoop strains that caused a non-uniform distribution of subcritical cracking, which could influence the hermetic properties and strength.
|
Oct 2022
|
|
B16-Test Beamline
|
Diamond Proposal Number(s):
[9140]
Abstract: Despite the well-known importance of controlling shrinkage-induced liquid flow in alloy castings to avoid the formation of catastrophic hot tears during the final stages of solidification, there has been little direct experimental measurement of liquid metal flow and hot tear formation under practical conditions. We use synchrotron X-rays to obtain radiographic video sequences of the solidification of monotectic Al-Pb alloys in which Pb droplets form as a fine-scale emulsion. We track and measure the velocity of thousands of Pb droplets as they move through interdendritic regions due to the effect of liquid to solid shrinkage during the final stages of solidification, up to the point of hot tear formation. Based on the droplet velocities, we present an analysis to estimate the interdendritic liquid velocity as solid fraction increases, and thus the shrinkage pressure drop driving the flow. The analysis is applied for video sequences obtained for both equiaxed and columnar microstructures, each under a range of cooling rates. Our measurements of the critical shrinkage-induced pressure for hot tear formation agree well with prior model-based and theoretical suggestions. The limitations and prospects for droplet tracking measurements of liquid metal flows are discussed.
|
Aug 2022
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[22393]
Abstract: This work presents an imaging study of the complex and often overlooked early-onset mechanisms of the deflagration-to-detonation transition (DDT). Columns of granular octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) doped with tungsten tracer particles are ignited thermally by hot wire and the resulting reactions are studied via high-speed X-ray radiography utilizing the Diamond Light Source synchrotron. The observed results provide insights into the initial development of the DDT process, resulting in a proposed mechanism for the slow initial steps in DDT for thermally ignited, low bulk-density granular explosive contained in a quasi-one dimensional tube configuration. In order to clarify the proposed mechanism, the terms preferential flow channel and matrix burning are adapted from the soil mechanics and hydrology literature to further elucidate the role of convective burning in DDT. The proposed mechanism helps to clarify the ongoing debate on the transport of gases in the Baer–Nunziato and reduced Baer–Nunziato models and suggests that applicability of each interpretation depends on which step in the mechanism is being described.
|
Aug 2022
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[26376]
Open Access
Abstract: Three-dimensional X-ray diffraction (3DXRD) is shown to be feasible at the I12 Joint Engineering, Environmental and Processing (JEEP) beamline of Diamond Light Source. As a demonstration, a microstructually simple low-carbon ferritic steel was studied in a highly textured and annealed state. A processing pipeline suited to this beamline was created, using software already established in the 3DXRD user community, enabling grain centre-of-mass positions, orientations and strain tensor elements to be determined. Orientations, with texture measurements independently validated from electron backscatter diffraction (EBSD) data, possessed a ∼0.1° uncertainty, comparable with other 3DXRD instruments. The spatial resolution was limited by the far-field detector pixel size; the average of the grain centre of mass position errors was determined as ±∼80 µm. An average per-grain error of ∼1 × 10−3 for the elastic strains was also measured; this could be reduced in future experiments by improving sample preparation, geometry calibration, data collection and analysis techniques. Application of 3DXRD onto I12 shows great potential, where its implementation is highly desirable due to the flexible, open architecture of the beamline. User-owned or designed sample environments can be used, thus 3DXRD could be applied to previously unexplored scientific areas.
|
Jul 2022
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[19251]
Abstract: Vanadium base alloys represent potentially promising candidate structural materials for use in nuclear fusion reactors due to vanadium's low activity, high thermal strength, and good swelling resistance. In this work, the mechanical properties of the current frontrunner vanadium base alloy, V-4Cr-4Ti, have been interrogated using in-situ high energy X-ray diffraction (XRD) tensile testing at varying temperatures. The single crystal elastic constants of the samples were determined from the in-situ XRD data and used to evaluate results from density functional theory calculations. Polycrystalline elastic properties and Zener anisotropy were calculated from the single crystal elastic constants produced, revealing the effect of elevated temperature on the alloy's elastic properties. These results characterise important thermomechanical properties, valuable in mechanical modelling, that will allow further and improved analysis of the structural suitability of V-4Cr-4Ti ahead of alloy adoption in the mainstream.
|
Jul 2022
|
|