I03-Macromolecular Crystallography
|
Open Access
Abstract: Enzyme regulation is vital for metabolic adaptability in living systems. Fine control of enzyme activity is often delivered through post-translational mechanisms, such as allostery or allokairy. β-phosphoglucomutase (βPGM) from Lactococcus lactis is a phosphoryl transfer enzyme required for complete catabolism of trehalose and maltose, through the isomerisation of β-glucose 1-phosphate to glucose 6-phosphate via β-glucose 1,6-bisphosphate. Surprisingly for a gatekeeper of glycolysis, no fine control mechanism of βPGM has yet been reported. Herein, we describe allomorphy, a post-translational control mechanism of enzyme activity. In βPGM, isomerisation of the K145-P146 peptide bond results in the population of two conformers that have different activities owing to repositioning of the K145 sidechain. In vivo phosphorylating agents, such as fructose 1,6-bisphosphate, generate phosphorylated forms of both conformers, leading to a lag phase in activity until the more active phosphorylated conformer dominates. In contrast, the reaction intermediate β-glucose 1,6-bisphosphate, whose concentration depends on the β-glucose 1-phosphate concentration, couples the conformational switch and the phosphorylation step, resulting in the rapid generation of the more active phosphorylated conformer. In enabling different behaviours for different allomorphic activators, allomorphy allows an organism to maximise its responsiveness to environmental changes while minimising the diversion of valuable metabolites.
|
Nov 2020
|
|
I03-Macromolecular Crystallography
|
Laszlo L. P.
Hosszu
,
Rebecca
Conners
,
Daljit
Sangar
,
Mark
Batchelor
,
Elizabeth B.
Sawyer
,
Stuart
Fisher
,
Matthew J.
Cliff
,
Andrea M.
Hounslow
,
Katherine
Mcauley
,
R. Leo
Brady
,
Graham S.
Jackson
,
Jan
Bieschke
,
Jonathan P.
Waltho
,
John
Collinge
Diamond Proposal Number(s):
[4923, 5969]
Open Access
Abstract: Prion diseases, a group of incurable, lethal neurodegenerative disorders of mammals including humans, are caused by prions, assemblies of misfolded host prion protein (PrP). A single point mutation (G127V) in human PrP prevents prion disease, however the structural basis for its protective effect remains unknown. Here we show that the mutation alters and constrains the PrP backbone conformation preceding the PrP β-sheet, stabilising PrP dimer interactions by increasing intermolecular hydrogen bonding. It also markedly changes the solution dynamics of the β2-α2 loop, a region of PrP structure implicated in prion transmission and cross-species susceptibility. Both of these structural changes may affect access to protein conformers susceptible to prion formation and explain its profound effect on prion disease.
|
Jul 2020
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[12788]
Abstract: Catechol-O-methyltransferase (COMT) is a model S-adenosyl-L-methionine (SAM) dependent methyl transferase, which catalyzes the methylation of catecholamine neurotransmitters such as dopamine in the primary pathway of neurotransmitter deactivation in animals. Despite extensive study, there is no consensus view of the physical basis of catalysis in COMT. Further progress requires experimental data that directly probes active site geometry, protein dynamics and electrostatics, ideally in a range of positions along the reaction coordinate. Here we establish that sinefungin, a fungal- derived inhibitor of SAM-dependent enzymes that possess transition state-like charge on the transferring group, can be used as a transition state analog of COMT when combined with a catechol. X-ray crystal structures and NMR backbone assignments of the ternary complexes of the soluble form of human COMT containing dinitrocatechol, Mg2+ and SAM or sinefungin were determined. Comparison and further analysis with the aid of density functional theory calculations and molecular dynamics simulations provides evidence for active site ‘compaction’, which is driven by electrostatic stabilization between the transferring methyl group and ‘equatorial’ active site residues that are orthogonal to the donor–acceptor (pseudo reaction) coordinate. We propose that upon catecholamine binding and subsequent proton transfer to Lys 144, the enzyme becomes geometrically preorganized, with little further movement along the donor–acceptor coordinate required for methyl transfer. Catalysis is then largely facilitated through stabilization of the developing charge on the transferring methyl group via ‘equatorial’ H-bonding and electrostatic interactions orthogonal to the donor–acceptor coordinate.
|
Apr 2019
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[12788, 17773]
Abstract: The biological production of FDCA is of considerable value as a potential replacement for petrochemical derived monomers such as terephthalate, used in polyethylene terephthalate (PET) plastics. HmfF belongs to an uncharacterised branch of the prenylated flavin (prFMN) dependent UbiD-family of reversible (de)carboxylases, and is proposed to convert 2,5-furan-dicarboxylic acid (FDCA) to furoic acid in vivo. We present detailed characterisation of HmfF and demonstrate that HmfF can catalyse furoic acid carboxylation at elevated CO2 levels in vitro. We report the crystal structure of a thermophilic HmfF from Pelotomaculum thermopropionicum, revealing the active site located above the prFMN cofactor contains a furoic acid/FDCA binding site composed of residues H296-R304-R331 specific to the HmfF branch of UbiD enzymes. Variants of the latter are compromised in activity, while H296N alters the substrate preference to pyrrol compounds. Solution studies and crystal structure determination of an engineered dimeric form of the enzyme revealed an unexpected key role for a UbiD-family wide conserved Leu residue in activity. The structural insights into substrate and cofactor binding provide a template for further exploitation of HmfF in the production of FDCA plastic precursors, and improve our understanding of catalysis by members of the UbiD enzyme family.
|
Feb 2019
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[8997, 12788]
Abstract: Many enzymes that catalyze hydride transfer reactions work via a mechanism dominated by quantum mechanical tunneling. The involvement of fast vibrational modes of the reactive complex is often inferred in these reactions, as in the case of the NAD(P)H-dependent pentaerythritol tetranitrate reductase (PETNR). Herein, we interrogated the H-transfer mechanism in PETNR by designing conservative (L25I and I107L) and side-chain shortening (L25A and I107A) PETNR variants and using a combination of experimental approaches (stopped-flow rapid kinetics, X-ray crystallography, isotope/temperature dependence studies of H-transfer and NMR spectroscopy). X-ray data show subtle changes in the local environment of the targeted side-chains, but no major structural perturbation caused by mutagenesis of these two second sphere active site residues. However, temperature dependence studies of H-transfer revealed a coenzyme-specific and complex thermodynamic equilibrium between different reactive configurations in PETNR–coenzyme complexes. We find that mutagenesis of these second sphere ‘non-catalytic’ residues affects differently the reactivity of PETNR with coenzymes NADPH and NADH. We attribute this to subtle, dynamic structural change in the PETNR active site, the effects of which impact differently in the non-equivalent reactive geometries of PETNR:NADH and PETNR:NADPH complexes. This inference is confirmed through changes observed in the NMR chemical shift data for PETNR complexes with unreactive 1,4,5,6-tetrahydro-NAD(P) analogues. We show that H-transfer rates can (to some extent) be buffered through entropy-enthalpy compensation, but that use of integrated experimental tools reveals hidden complexities that implicate a role for dynamics in this relatively simple H-transfer reaction. Similar approaches are likely to be informative in other enzymes to understand the relative importance of (distal) hydrophobic side-chains and dynamics in controlling the rates of enzymatic H-transfer.
|
Oct 2018
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Luke A.
Johnson
,
Angus J.
Robertson
,
Nicola J.
Baxter
,
Clare R.
Trevitt
,
Claudine
Bisson
,
Yi
Jin
,
Henry P.
Wood
,
Andrea M.
Hounslow
,
Matthew J.
Cliff
,
G. Michael
Blackburn
,
Matthew W.
Bowler
,
Jonathan P.
Waltho
Diamond Proposal Number(s):
[12788]
Abstract: Phosphate plays a crucial role in biology, owing to the stability of the phosphate ester bond. To overcome this inherent stability, enzymes that catalyze phosphoryl transfer reactions achieve enormous rate accelerations to operate on biologically relevant timescales and the mechanisms that underpin catalysis have been the subject of extensive debate. In an archetypal system, β-phosphoglucomutase catalyzes the reversible isomerization of β-glucose 1-phosphate and glucose 6-phosphate via two phosphoryl transfer steps using a β-glucose 1,6-bisphosphate intermediate and a catalytic MgII ion. In the present work, a variant of β-phosphoglucomutase, where the aspartate residue that acts as a general acid-base is replaced with asparagine, traps highly stable complexes containing the β-glucose 1,6-bisphosphate intermediate in the active site. Crystal structures of these complexes show that, when the enzyme is unable to transfer a proton, the intermediate is arrested in catalysis at an initial stage of phosphoryl transfer. The nucleophilic oxygen and transferring phosphorus atoms are aligned and in van der Waals contact, yet the enzyme is less closed than in transition state (analogue) complexes and binding of the catalytic MgII ion is compromised. Together, these observations indicate that optimal closure and optimal MgII binding occur only at higher energy positions on the reaction trajectory, allowing the enzyme to balance efficient catalysis with product dissociation. It is also confirmed that the general acid-base ensures that mutase activity is ~103 fold greater than phosphatase activity in β-phosphoglucomutase.
|
Jul 2018
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[8997]
Abstract: The UbiD family of reversible decarboxylases act on aromatic, heteroaromatic, and unsaturated aliphatic acids and utilize a prenylated flavin mononucleotide (prFMN) as cofactor, bound adjacent to a conserved Glu-ArgGlu/Asp ionic network in the enzyme's active site. It is proposed that UbiD activation requires oxidative maturation of the cofactor, for which two distinct isomers, prFMNketimine and prFMNiminium have been observed. It also has been suggested that only the prFMNiminium form is relevant to catalysis, which requires transient cycloaddition between substrate and cofactor. Using Aspergillus niger Fdc1 as a model system, we reveal isomerization of prFMNiminium to prFMNketimine is a light-dependent process that is largely independent of the Glu277-Arg173-Glu282 network and accompanied by irreversible loss of activity. On the other hand, efficient catalysis was highly dependent on an intact Glu-Ar-Glu network, as only Glu to Asp substitutions retain activity. Surprisingly, oxidative maturation to form the prFMNiminium species is severely affected only for the R173A variant. In summary, the unusual irreversible isomerization of prFMN is light dependent and likely proceeds via high-energy intermediates, but is independent of the Glu-Arg-Glu network. Our results from mutagenesis, crystallographic, spectroscopic and kinetic experiments indicate a clear role for the Glu-Arg-Glu network in both catalysis and oxidative maturation.
|
Dec 2017
|
|
I02-Macromolecular Crystallography
|
Open Access
Abstract: The biodegradation of lignin, one of the most abundant carbon compounds on Earth, has important biotechnological applications in the derivation of useful products from lignocellulosic wastes. The purple photosynthetic bacterium Rhodopseudomonas palustris is able to grow photoheterotrophically under anaerobic conditions on a range of phenylpropeneoid lignin monomers, including coumarate, ferulate, caffeate, and cinnamate. RPA1789 (CouP) is the periplasmic binding-protein component of an ABC system (CouPSTU; RPA1789, RPA1791–1793), which has previously been implicated in the active transport of this class of aromatic substrate. Here, we show using both intrinsic tryptophan fluorescence and isothermal titration calorimetry that CouP binds a range of phenylpropeneoid ligands with Kd values in the nanomolar range. The crystal structure of CouP with ferulate as the bound ligand shows H-bond interactions between the 4-OH group of the aromatic ring with His309 and Gln305. H-bonds are also made between the carboxyl group on the ferulate side chain and Arg197, Ser222, and Thr102. An additional transport system (TarPQM; RPA1782–1784), a member of the tripartite ATP-independent periplasmic (TRAP) transporter family, is encoded at the same locus as rpa1789 and several other genes involved in coumarate metabolism. We show that the periplasmic binding-protein of this system (TarP; RPA1782) also binds coumarate, ferulate, caffeate, and cinnamate with nanomolar Kd values. Thus, we conclude that R. palustris uses two redundant but energetically distinct primary and secondary transporters that both employ high-affinity periplasmic binding-proteins to maximise the uptake of lignin-derived aromatic substrates from the environment. Our data provide a detailed thermodynamic and structural basis for understanding the interaction of lignin-derived aromatic substrates with proteins and will be of use in the further exploitation of the flexible metabolism of R. palustris for anaerobic aromatic biotransformations.
|
Mar 2013
|
|