B21-High Throughput SAXS
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[26794, 19951]
Abstract: The cell wall of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is rich in complex lipids. During intracellular stage, Mtb depends on lipids for its survival. Mammalian cell-entry (Mce) 1 complex encoded by the mce1 operon is a mycolic/fatty acid importer. mce1 operon also encodes a putative fatty acyl-CoA synthetase (FadD5; Rv0166), potentially responsible for the activation of fatty acids imported through the Mce1 complex by conjugating them to Coenzyme A. Here, we report that FadD5 is associated to membrane although it can be purified as a soluble dimeric protein. ATP and CoA binding influence FadD5's stability and conformation respectively. Enzymatic studies with fatty acids of varying chain lengths show that FadD5 prefers long chain fatty acids as substrates. X-ray crystallographic studies on FadD5 and its variant reveal that the C-terminal domain (∼100 residues) is cleaved off during crystallization. Noteworthy, deletion of this domain renders FadD5 completely inactive. SAXS studies, however, confirm the presence of full length FadD5 as a dimer in solution. Further structural analysis and comparisons with homologs provide insights on the possible mode of membrane association and fatty acyl tail binding.
|
May 2025
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[19951, 24732]
Open Access
Abstract: The Mycobacterium tuberculosis trifunctional enzyme (MtTFE) is an α2β2 tetrameric enzyme in which the α-chain harbors the 2E-enoyl-CoA hydratase (ECH) and 3S-hydroxyacyl-CoA dehydrogenase (HAD) active sites, and the β-chain provides the 3-ketoacyl-CoA thiolase (KAT) active site. Linear, medium-chain and long-chain 2E-enoyl-CoA molecules are the preferred substrates of MtTFE. Previous crystallographic binding and modeling studies identified binding sites for the acyl-CoA substrates at the three active sites, as well as the NAD binding pocket at the HAD active site. These studies also identified three additional CoA binding sites on the surface of MtTFE that are different from the active sites. It has been proposed that one of these additional sites could be of functional relevance for the substrate channeling (by surface crawling) of reaction intermediates between the three active sites. Here, 226 fragments were screened in a crystallographic fragment-binding study of MtTFE crystals, resulting in the structures of 16 MtTFE–fragment complexes. Analysis of the 121 fragment-binding events shows that the ECH active site is the `binding hotspot' for the tested fragments, with 41 binding events. The mode of binding of the fragments bound at the active sites provides additional insight into how the long-chain acyl moiety of the substrates can be accommodated at their proposed binding pockets. In addition, the 20 fragment-binding events between the active sites identify potential transient binding sites of reaction intermediates relevant to the possible channeling of substrates between these active sites. These results provide a basis for further studies to understand the functional relevance of the latter binding sites and to identify substrates for which channeling is crucial.
|
Aug 2024
|
|
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[19951]
Open Access
Abstract: Facultative anaerobic bacteria such as Escherichia coli have two α2β2 heterotetrameric trifunctional enzymes (TFE), catalyzing the last three steps of the β-oxidation cycle: soluble aerobic TFE (EcTFE) and membrane-associated anaerobic TFE (anEcTFE), closely related to the human mitochondrial TFE (HsTFE). The cryo-EM structure of anEcTFE and crystal structures of anEcTFE-α show that the overall assembly of anEcTFE and HsTFE is similar. However, their membrane-binding properties differ considerably. The shorter A5-H7 and H8 regions of anEcTFE-α result in weaker α-β as well as α-membrane interactions, respectively. The protruding H-H region of anEcTFE-β is therefore more critical for membrane-association. Mutational studies also show that this region is important for the stability of the anEcTFE-β dimer and anEcTFE heterotetramer. The fatty acyl tail binding tunnel of the anEcTFE-α hydratase domain, as in HsTFE-α, is wider than in EcTFE-α, accommodating longer fatty acyl tails, in good agreement with their respective substrate specificities.
|
May 2023
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
VMXi-Versatile Macromolecular Crystallography in situ
|
Abhinandan V.
Murthy
,
Ramita
Sulu
,
Andrey
Lebedev
,
Antti M.
Salo
,
Kati
Korhonen
,
Rajaram
Venkatesan
,
Hongmin
Tu
,
Ulrich
Bergmann
,
Janne
Jänis
,
Mikko
Laitaoja
,
Lloyd
Ruddock
,
Johanna
Myllyharju
,
M. Kristian
Koski
,
Rik. K.
Wierenga
Diamond Proposal Number(s):
[20001, 13172, 19951]
Open Access
Abstract: Collagen prolyl 4-hydroxylases (C-P4H) are α2β2 tetramers, which catalyze the prolyl 4-hydroxylation of procollagen chains, allowing for the formation of the stable triple-helical collagen structure in the endoplasmic reticulum. The C-P4H α-subunit provides the N-terminal dimerization domain, the middle peptide-substrate-binding domain (PSB), and the C-terminal catalytic (CAT) domain, while the β-subunit is identical to the enzyme protein disulfide isomerase (PDI). The structure of the N-terminal part of the α-subunit (N-terminal and PSB domain) is known, but the structures of the PSB-CAT linker region and the CAT domain as well as its mode of assembly with the β/PDI-subunit, are not known. Here we report the crystal structure of the CAT domain of human C-P4H-II complexed with the intact β/PDI-subunit, at 3.8Å resolution. The CAT domain interacts with the a, b’, and a’ domains of the β/PDI-subunit, such that the CAT active site is facing bulk solvent. The structure also shows that the C-P4H-II CAT domain has a unique N-terminal extension, consisting of α-helices and a β-strand, which is the edge strand of its major antiparallel β-sheet. This extra region of the CAT domain interacts tightly with the β/PDI-subunit, showing that the CAT-PDI interface includes an inter-subunit disulfide bridge with the a’ domain and tight hydrophobic interactions with the b’ domain. Using this new structural information, the structure of the mature C-P4H-II α2β2 tetramer is predicted. The model suggests that the CAT active site properties are modulated by α-helices of the N-terminal dimerization domains of both subunits of the α2-dimer.
|
Oct 2022
|
|
B21-High Throughput SAXS
|
Diamond Proposal Number(s):
[14794]
Open Access
Abstract: Mycobacterium tuberculosis (Mtb), which is responsible for more than a million deaths annually, uses lipids as the source of carbon and energy for its survival in the latent phase of infection. Mtb cannot synthesize all of the lipid molecules required for its growth and pathogenicity. Therefore, it relies on transporters such as the mammalian cell entry (Mce) complexes to import lipids from the host across the cell wall. Despite their importance for the survival and pathogenicity of Mtb, information on the structural properties of these proteins is not yet available. Each of the four Mce complexes in Mtb (Mce1–4) comprises six substrate-binding proteins (SBPs; MceA–F), each of which contains four conserved domains (N-terminal transmembrane, MCE, helical and C-terminal unstructured tail domains). Here, the properties of the various domains of Mtb Mce1A and Mce4A, which are involved in the import of mycolic/fatty acids and cholesterol, respectively, are reported. In the crystal structure of the MCE domain of Mce4A (MtMce4A39–140) a domain-swapped conformation is observed, whereas solution studies, including small-angle X-ray scattering (SAXS), indicate that all Mce1A and Mce4A domains are predominantly monomeric. Further, structural comparisons show interesting differences from the bacterial homologs MlaD, PqiB and LetB, which form homohexamers when assembled as functional transporter complexes. These data, and the fact that there are six SBPs in each Mtb mce operon, suggest that the MceA–F SBPs from Mce1–4 may form heterohexamers. Also, interestingly, the purification and SAXS analysis showed that the helical domains interact with the detergent micelle, suggesting that when assembled the helical domains of MceA–F may form a hydrophobic pore for lipid transport, as observed in EcPqiB. Overall, these data highlight the unique structural properties of the Mtb Mce SBPs.
|
Sep 2021
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[19951, 26302, 14794, 10291]
Open Access
Abstract: The Mycobacterium tuberculosis trifunctional enzyme (MtTFE) is an α2β2 tetrameric enzyme. The α-chain harbors the 2E-enoyl-CoA hydratase (ECH) and 3S-hydroxyacyl-CoA dehydrogenase (HAD) activities and the β-chain provides the 3-ketoacyl-CoA thiolase (KAT) activity. Enzyme kinetic data reported here show that medium and long chain enoyl-CoA molecules are preferred substrates for MtTFE. Modelling studies indicate how the linear medium and long acyl chains of these substrates can bind to each of the active sites. In addition, crystallographic binding studies have identified three new CoA binding sites which are different from the previously known CoA binding sites of the three TFE active sites. Structure comparisons provide new insights into the properties of ECH, HAD and KAT active sites of MtTFE. The interactions of the adenine moiety of CoA with loop-2 of the ECH active site cause a conformational change of this loop by which a competent ECH active site is formed. The NAD+ binding domain (domain C) of the HAD part of MtTFE has only a few interactions with the rest of the complex and adopts a range of open conformations, whereas the A-domain of the ECH part is rigidly fixed with respect to the HAD part. Two loops, the CB1-CA1 region and the catalytic CB4-CB5 loop, near the thiolase active site and the thiolase dimer interface, have high B-factors. Structure comparisons suggest that a competent and stable thiolase dimer is formed only when complexed with the α-chains, highlighting the importance of the assembly for the proper functioning of the complex.
|
Sep 2021
|
|
B21-High Throughput SAXS
|
Diamond Proposal Number(s):
[14794]
Open Access
Abstract: The Saccharomyces cerevisiae Rsm22 protein (Sc-Rsm22), encoded by the nuclear RSM22 (systematic name YKL155c) gene, is a distant homologue of Rsm22 from Trypanosoma brucei (Tb-Rsm22) and METTL17 from mouse (Mm-METTL17). All three proteins have been shown to be associated with mitochondrial gene expression, and Sc-Rsm22 has been documented to be essential for mitochondrial respiration. The Sc-Rsm22 protein comprises a polypeptide of molecular weight 72.2 kDa that is predicted to harbor an N-terminal mitochondrial targeting sequence. The precise physiological function of Rsm22-family proteins is unknown, and no structural information has been available for Sc-Rsm22 to date. In this study, Sc-Rsm22 was expressed and purified in monomeric and dimeric forms, their folding was confirmed by circular-dichroism analyses and their low-resolution structures were determined using a small-angle X-ray scattering (SAXS) approach. The solution structure of the monomeric form of Sc-Rsm22 revealed an elongated three-domain arrangement, which differs from the shape of Tb-Rsm22 in its complex with the mitochondrial small ribosomal subunit in T. brucei (PDB entry 6sg9). A bioinformatic analysis revealed that the core domain in the middle (Leu117–Asp462 in Sc-Rsm22) resembles the corresponding region in Tb-Rsm22, including a Rossmann-like methyltransferase fold followed by a zinc-finger-like structure. The latter structure is not present in this position in other methyltransferases and is therefore a unique structural motif for this family. The first half of the C-terminal domain is likely to form an OB-fold, which is typically found in RNA-binding proteins and is also seen in the Tb-Rsm22 structure. In contrast, the N-terminal domain of Sc-Rsm22 is predicted to be fully α-helical and shares no sequence similarity with other family members. Functional studies demonstrated that the monomeric variant of Sc-Rsm22 methylates mitochondrial tRNAs in vitro. These data suggest that Sc-Rsm22 is a new and unique member of the RNA methyltransferases that is important for mitochondrial protein synthesis.
|
Jun 2021
|
|
|
Ed
Daniel
,
Mirko M.
Maksimainen
,
Neil
Smith
,
Ville
Ratas
,
Ekaterina
Biterova
,
Sudarshan N.
Murthy
,
M. Tanvir
Rahman
,
Tiila-Riikka
Kiema
,
Shruthi
Sridhar
,
Gabriele
Cordara
,
Subhadra
Dalwani
,
Rajaram
Venkatesan
,
Jaime
Prilusky
,
Orly
Dym
,
Lari
Lehtio
,
M. Kristian
Koski
,
Alun W.
Ashton
,
Joel L.
Sussman
,
Rikkert K.
Wierenga
Open Access
Abstract: The web-based IceBear software is a versatile tool to monitor the results of crystallization experiments and is designed to facilitate supervisor and student communications. It also records and tracks all relevant information from crystallization setup to PDB deposition in protein crystallography projects. Fully automated data collection is now possible at several synchrotrons, which means that the number of samples tested at the synchrotron is currently increasing rapidly. Therefore, the protein crystallography research communities at the University of Oulu, Weizmann Institute of Science and Diamond Light Source have joined forces to automate the uploading of sample metadata to the synchrotron. In IceBear, each crystal selected for data collection is given a unique sample name and a crystal page is generated. Subsequently, the metadata required for data collection are uploaded directly to the ISPyB synchrotron database by a shipment module, and for each sample a link to the relevant ISPyB page is stored. IceBear allows notes to be made for each sample during cryocooling treatment and during data collection, as well as in later steps of the structure determination. Protocols are also available to aid the recycling of pins, pucks and dewars when the dewar returns from the synchrotron. The IceBear database is organized around projects, and project members can easily access the crystallization and diffraction metadata for each sample, as well as any additional information that has been provided via the notes. The crystal page for each sample connects the crystallization, diffraction and structural information by providing links to the IceBear drop-viewer page and to the ISPyB data-collection page, as well as to the structure deposited in the Protein Data Bank.
|
Feb 2021
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[26302, 24732]
Abstract: The peroxisomal multifunctional enzyme type 1 (MFE1) catalyzes two successive reactions in the β-oxidation cycle: the 2E-enoyl-CoA hydratase (ECH) and NAD+-dependent 3S-hydroxyacyl-CoA dehydrogenase (HAD) reactions. MFE1 is a monomeric enzyme that has five domains. The N-terminal part (domains A and B) adopts the crotonase fold and the C-terminal part (domains C, D and E) adopts the HAD fold. A new crystal form of MFE1 has captured a conformation in which both active sites are noncompetent. This structure, at 1.7 Å resolution, shows the importance of the interactions between Phe272 in domain B (the linker helix; helix H10 of the crotonase fold) and the beginning of loop 2 (of the crotonase fold) in stabilizing the competent ECH active-site geometry. In addition, protein crystallographic binding studies using optimized crystal-treatment protocols have captured a structure with both the 3-ketodecanoyl-CoA product and NAD+ bound in the HAD active site, showing the interactions between 3-ketodecanoyl-CoA and residues of the C, D and E domains. Structural comparisons show the importance of domain movements, in particular of the C domain with respect to the D/E domains and of the A domain with respect to the HAD part. These comparisons suggest that the N-terminal part of the linker helix, which interacts tightly with domains A and E, functions as a hinge region for movement of the A domain with respect to the HAD part.
|
Dec 2020
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[14794]
Abstract: Degradation of fatty acids by the β-oxidation pathway results in the formation of acetyl-CoA which enters the TCA cycle for the production of ATP. In E. coli, the last three steps of the β-oxidation are catalyzed by two heterotetrameric α2β2 enzymes namely the aerobic trifunctional enzyme (EcTFE) and the anaerobic TFE (anEcTFE). The α-subunit of TFE has 2E-enoyl-CoA hydratase (ECH) and 3S-hydroxyacyl-CoA dehydrogenase (HAD) activities whereas the β-subunit is a thiolase with 3-ketoacyl-CoA thiolase (KAT) activity. Recently, it has been shown that the two TFEs have complementary substrate specificities allowing for the complete degradation of long chain fatty acyl-CoAs into acetyl-CoA under aerobic conditions. Also, it has been shown that the tetrameric EcTFE and anEcTFE assemblies are similar to the TFEs of Pseudomans fragi and human, respectively. Here the properties of the EcTFE subunits are further characterized. Strikingly, it is observed that when expressed separately, EcTFE-α is a catalytically active monomer whereas EcTFE-β is inactive. However, when mixed together active EcTFE tetramer is reconstituted. The crystal structure of the EcTFE-α chain is also reported, complexed with ATP, bound in its HAD active site. Structural comparisons show that the EcTFE hydratase active site has a relatively small fatty acyl tail binding pocket when compared to other TFEs in good agreement with its preferred specificity for short chain 2E-enoyl-CoA substrates. Furthermore, it is observed that millimolar concentrations of ATP destabilize the EcTFE complex, and this may have implications for the ATP-mediated regulation of β-oxidation in E. coli.
|
Mar 2020
|
|