I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[19248]
Open Access
Abstract: The hypoxic response is central to cell function and plays a significant role in the growth and survival of solid tumours. HIF-1 regulates the hypoxic response by activating over 100 genes responsible for adaptation to hypoxia, making it a potential target for anticancer drug discovery. Although there is significant structural and mechanistic understanding of the interaction between HIF-1α and p300 alongside negative regulators of HIF-1α such as CITED2, there remains a need to further understand the sequence determinants of binding. In this work we use a combination of protein expression, chemical synthesis, fluorescence anisotropy and isothermal titration calorimetry for HIF-1α sequence variants and a HIF-1α-CITED hybrid sequence which we term CITIF. We show the HIF-1α sequence is highly tolerant to sequence variation through reduced enthalpic and less unfavourable entropic contributions, These data imply backbone as opposed to side chain interactions and ligand folding control the binding interaction and that sequence variations are tolerated as a result of adopting a more disordered bound interaction or “fuzzy” complex.
|
Apr 2022
|
|
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[23269]
Open Access
Abstract: The α1-acid glycoprotein (AGP) is an abundant blood plasma protein with important immunomodulatory functions coupled to endogenous and exogenous ligand binding properties. Its affinity for many drug-like structures, however, means AGP can have a significant effect on the pharmokinetics and pharmacodynamics of numerous small molecule therapeutics. Staurosporine, and its hydroxylated forms UCN-01 and UCN-02, are kinase inhibitors that have been investigated at length as anti-tumour compounds. Despite their potency, these compounds display poor pharmokinetics due to binding to both AGP variants, AGP1 and AGP2. Recent renewed interest in UCN-01 as a cytostatic protective agent prompted us to solve the structure of the AGP2/UCN-01 complex by X-ray crystallography, revealing for the first time the precise binding mode of UCN-01. Solution NMR suggests AGP2 undergoes a significant conformational change upon ligand binding, but also that it uses a common set of sidechains with which it captures key groups of UCN-01 and other small molecule ligands. We anticipate that this structure and supporting NMR data will facilitate rational re-design of small molecules that could evade AGP and therefore improve tissue distribution.
|
Nov 2021
|
|
NONE-No attached Diamond beamline
|
H. T. Henry
Chan
,
Marc A.
Moesser
,
Rebecca K.
Walters
,
Tika R.
Malla
,
Rebecca M.
Twidale
,
Tobias
John
,
Helen M.
Deeks
,
Tristan
Johnston-Wood
,
Victor
Mikhailov
,
Richard B.
Sessions
,
William
Dawson
,
Eidarus
Salah
,
Petra
Lukacik
,
Claire
Strain-Damerell
,
C. David
Owen
,
Takahito
Nakajima
,
Katarzyna
Świderek
,
Alessio
Lodola
,
Vicent
Moliner
,
David R.
Glowacki
,
James
Spencer
,
Martin A.
Walsh
,
Christopher J.
Schofield
,
Luigi
Genovese
,
Deborah K.
Shoemark
,
Adrian J.
Mulholland
,
Fernanda
Duarte
,
Garrett M.
Morris
Open Access
Abstract: The main protease (Mpro) of SARS-CoV-2 is central to viral maturation and is a promising drug target, but little is known about structural aspects of how it binds to its 11 natural cleavage sites. We used biophysical and crystallographic data and an array of biomolecular simulation techniques, including automated docking, molecular dynamics (MD) and interactive MD in virtual reality, QM/MM, and linear-scaling DFT, to investigate the molecular features underlying recognition of the natural Mpro substrates. We extensively analysed the subsite interactions of modelled 11-residue cleavage site peptides, crystallographic ligands, and docked COVID Moonshot-designed covalent inhibitors. Our modelling studies reveal remarkable consistency in the hydrogen bonding patterns of the natural Mpro substrates, particularly on the N-terminal side of the scissile bond. They highlight the critical role of interactions beyond the immediate active site in recognition and catalysis, in particular plasticity at the S2 site. Building on our initial Mpro-substrate models, we used predictive saturation variation scanning (PreSaVS) to design peptides with improved affinity. Non-denaturing mass spectrometry and other biophysical analyses confirm these new and effective ‘peptibitors’ inhibit Mpro competitively. Our combined results provide new insights and highlight opportunities for the development of Mpro inhibitors as anti-COVID-19 drugs.
|
Oct 2021
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Sergio
Celis
,
Fruzsina
Hobor
,
Thomas
James
,
Gail J.
Bartlett
,
Amaurys A.
Ibarra
,
Deborah K.
Shoemark
,
Zsofia
Hegedus
,
Kristina
Hetherington
,
Derek N.
Woolfson
,
Richard B.
Sessions
,
Thomas A.
Edwards
,
David M.
Andrews
,
Adam
Nelson
,
Andrew J.
Wilson
Diamond Proposal Number(s):
[19248]
Open Access
Abstract: Protein–protein interactions (PPIs) are central to biological mechanisms, and can serve as compelling targets for drug discovery. Yet, the discovery of small molecule inhibitors of PPIs remains challenging given the large and typically shallow topography of the interacting protein surfaces. Here, we describe a general approach to the discovery of orthosteric PPI inhibitors that mimic specific secondary protein structures. Initially, hot residues at protein–protein interfaces are identified in silico or from experimental data, and incorporated into secondary structure-based queries. Virtual libraries of small molecules are then shape-matched against the queries, and promising ligands docked to target proteins. The approach is exemplified experimentally using two unrelated PPIs that are mediated by an α-helix (p53/hDM2) and a β-strand (GKAP/SHANK1-PDZ). In each case, selective PPI inhibitors are discovered with low μM activity as determined by a combination of fluorescence anisotropy and 1H–15N HSQC experiments. In addition, hit expansion yields a series of PPI inhibitors with defined structure–activity relationships. It is envisaged that the generality of the approach will enable discovery of inhibitors of a wide range of unrelated secondary structure-mediated PPIs.
|
Mar 2021
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[19248]
Open Access
Abstract: β-Strand mediated protein–protein interactions (PPIs) represent underexploited targets for chemical probe development despite representing a significant proportion of known and therapeutically relevant PPI targets. β-Strand mimicry is challenging given that both amino acid side-chains and backbone hydrogen-bonds are typically required for molecular recognition, yet these are oriented along perpendicular vectors. This paper describes an alternative approach, using GKAP/SHANK1 PDZ as a model and dynamic ligation screening to identify small-molecule replacements for tranches of peptide sequence. A peptide truncation of GKAP functionalized at the N- and C-termini with acylhydrazone groups was used as an anchor. Reversible acylhydrazone bond exchange with a library of aldehyde fragments in the presence of the protein as template and in situ screening using a fluorescence anisotropy (FA) assay identified peptide hybrid hits with comparable affinity to the GKAP peptide binding sequence. Identified hits were validated using FA, ITC, NMR and X-ray crystallography to confirm selective inhibition of the target PDZ-mediated PPI and mode of binding. These analyses together with molecular dynamics simulations demonstrated the ligands make transient interactions with an unoccupied basic patch through electrostatic interactions, establishing proof-of-concept that this unbiased approach to ligand discovery represents a powerful addition to the armory of tools that can be used to identify PPI modulators.
|
Jan 2021
|
|
I03-Macromolecular Crystallography
|
Gaelle R.
Carrat
,
Elizabeth
Haythorne
,
Alejandra
Tomas
,
Leena
Haataja
,
Andreas
Müller
,
Peter
Arvan
,
Alexandra
Piunti
,
Kaiying
Cheng
,
Mutian
Huang
,
Timothy J.
Pullen
,
Eleni
Georgiadou
,
Theodoros
Stylianides
,
Nur Shabrina
Amirruddin
,
Victoria
Salem
,
Walter
Distaso
,
Andrew
Cakebread
,
Kate J.
Heesom
,
Philip A.
Lewis
,
David J.
Hodson
,
Linford J.
Briant
,
Annie C. H.
Fung
,
Richard B.
Sessions
,
Fabien
Alpy
,
Alice P. S.
Kong
,
Peter I.
Benke
,
Federico
Torta
,
Adrian Kee
Keong Teo
,
Isabelle
Leclerc
,
Michele
Solimena
,
Dale B.
Wigley
,
Guy A.
Rutter
Open Access
Abstract: Objective: Risk alleles for type 2 diabetes at the STARD10 locus are associated with lowered STARD10 expression in the β-cell, impaired glucose-induced insulin secretion and decreased circulating proinsulin:insulin ratios. Although likely to serve as a mediator of intracellular lipid transfer, the identity of the transported lipids, and thus the pathways through which STARD10 regulates β-cell function, are not understood. The aim of this study was to identify the lipids transported and affected by STARD10 in the β-cell and and the role of the protein in controlling proinsulin processing and insulin granule biogenesis and maturation. Methods: We used isolated islets from mice deleted selectively in the β-cell for Stard10 (βStarD10KO) and performed electron microscopy, pulse-chase, RNA sequencing and lipidomic analyses. Proteomic analysis of STARD10 binding partners was executed in INS1 (832/13) cell line. X-ray crystallography followed by molecular docking and lipid overlay assay were performed on purified STARD10 protein. Results: βStard10KO islets had a sharply altered dense core granule appearance, with a dramatic increase in the number of “rod-like” dense cores. Correspondingly, basal secretion of proinsulin was increased versus wild-type islets. Solution of the crystal structure of STARD10 to 2.3 Å resolution revealed a binding pocket capable of accommodating polyphosphoinositides, and STARD10 was shown to bind to inositides phosphorylated at the 3’ position. Lipidomic analysis of βStard10KO islets demonstrated changes in phosphatidyl inositol levels, and the inositol lipid kinase PIP4K2C was identified as a STARD10 binding partner. Also consistent with roles for STARD10 in phosphoinositide signalling, the phosphoinositide binding proteins Pirt and Synaptotagmin 1 were amongst the differentially expressed genes in βStarD10KO islets. Conclusion: Our data indicate that STARD10 binds to, and may transport, phosphatidylinositides, influencing membrane lipid composition, insulin granule biosynthesis and insulin processing.
|
May 2020
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[8922]
Abstract: Streptococcus agalactiae (group B Streptococcus, GBS) is the predominant cause of early-onset infectious disease in neonates and is responsible for life-threatening infections in elderly and immunocompromised individuals. Clinical manifestations of GBS infection include sepsis, pneumonia, and meningitis. Here, we describe BspA, a deviant antigen I/II family polypeptide that confers adhesive properties linked to pathogenesis in GBS. Heterologous expression of BspA on the surface of the non-adherent bacterium Lactococcus lactis confers adherence to scavenger receptor gp340, human vaginal epithelium, and to the fungus Candida albicans. Complementary crystallographic and biophysical characterization of BspA reveal a novel β-sandwich adhesion domain and unique asparagine-dependent super-helical stalk. Collectively, these findings establish a new bacterial adhesin structure that has in effect been hijacked by a pathogenic Streptococcus species to provide competitive advantage in human mucosal infections.
|
Jul 2016
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[8922]
Abstract: The design of protein sequences that fold into prescribed de novo structures is challenging. General solutions to this problem require geometric descriptions of protein folds and methods to fit sequences to these. The α-helical coiled coils present a promising class of protein for this and offer considerable scope for exploring hitherto unseen structures. For α-helical barrels, which have more than four helices and accessible central channels, many of the possible structures remain unobserved. Here, we combine geometrical considerations, knowledge-based scoring, and atomistic modeling to facilitate the design of new channel-containing α-helical barrels. X-ray crystal structures of the resulting designs match predicted in silico models. Furthermore, the observed channels are chemically defined and have diameters related to oligomer state, which present routes to design protein function.
|
Oct 2014
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[7131]
Abstract: Nature presents various protein fibers that bridge the nanometer to micrometer regimes. These structures provide inspiration for the de novo design of biomimetic assemblies, both to address difficulties in studying and understanding natural systems, and to provide routes to new biomaterials with potential applications in nanotechnology and medicine. We have designed a self-assembling fiber system, the SAFs, in which two small ?-helical peptides are programmed to form a dimeric coiled coil and assemble in a controlled manner. The resulting fibers are tens of nm wide and tens of ?m long, and, therefore, comprise millions of peptides to give gigadalton supramolecular structures. Here, we describe the structure of the SAFs determined to approximately 8 Å resolution using cryotransmission electron microscopy. Individual micrographs show clear ultrastructure that allowed direct interpretation of the packing of individual ?-helices within the fibers, and the construction of a 3D electron density map. Furthermore, a model was derived using the cryotransmission electron microscopy data and side chains taken from a 2.3 Å X-ray crystal structure of a peptide building block incapable of forming fibers. This was validated using single-particle analysis techniques, and was stable in prolonged molecular-dynamics simulation, confirming its structural viability. The level of self-assembly and self-organization in the SAFs is unprecedented for a designed peptide-based material, particularly for a system of considerably reduced complexity compared with natural proteins. This structural insight is a unique high-resolution description of how ?-helical fibrils pack into larger protein fibers, and provides a basis for the design and engineering of future biomaterials.
|
Aug 2012
|
|
I02-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Nathan
Zaccai
,
Bertie
Chi
,
Andrew
Thomson
,
Aimee L
Boyle
,
Gail J
Bartlett
,
Marc
Bruning
,
Noah
Linden
,
Richard B
Sessions
,
Paula J
Booth
,
Leo
Brady
,
Derek N
Woolfson
Diamond Proposal Number(s):
[7131]
Abstract: The design of new proteins that expand the repertoire of natural protein structures represents a formidable challenge. Success in this area would increase understanding of protein structure and present new scaffolds that could be exploited in biotechnology and synthetic biology. Here we describe the design, characterization and X-ray crystal structure of a new coiled-coil protein. The de novo sequence forms a stand-alone, parallel, six-helix bundle with a channel running through it. Although lined exclusively by hydrophobic leucine and isoleucine side chains, the 6-Å channel is permeable to water. One layer of leucine residues within the channel is mutable, accepting polar aspartic acid and histidine side chains, which leads to subdivision and organization of solvent within the lumen. Moreover, these mutants can be combined to form a stable and unique (Asp-His)3 heterohexamer. These new structures provide a basis for engineering de novo proteins with new functions
|
Oct 2011
|
|