I03-Macromolecular Crystallography
|
Gijs
Ruijgrok
,
Wendy A.
Offen
,
Isabelle B.
Pickles
,
Deepa
Raju
,
Thanasis
Patsos
,
Casper
De Boer
,
Tim
Ofman
,
Joep
Rompa
,
Daan
Van Oord
,
Eleanor J.
Dodson
,
Alexander
Beekers
,
Thijs
Voskuilen
,
Michela
Ferrari
,
Liang
Wu
,
Antonius P. A.
Janssen
,
Jeroen D. C.
Codée
,
P. Lynne
Howell
,
Gideon J.
Davies
,
Herman S.
Overkleeft
Diamond Proposal Number(s):
[32736]
Open Access
Abstract: During infection, the human opportunistic pathogen Pseudomonas aeruginosa forms protective biofilms, whose matrix consists of proteins, nucleic acids, and polysaccharides such as alginate, Psl, and Pel. Psl, a polymeric pentasaccharide composed of mannose, rhamnose, and glucose, is produced during the early stages of biofilm formation, serving as a protective barrier against antibiotics and the immune system. The Psl biosynthesis gene cluster, besides encoding various glycosyltransferases, also includes an endoglycosidase, PslG. Here, we show, by activity-based protein profiling, structural studies on enzyme–inhibitor complexes, and defined substrate processing, that PslG is not, as previously suggested, an endo-β-mannosidase but instead a retaining endo-β-glucosidase. This insight allows the design of both competitive and covalent PslG inhibitors, as we show for repeating pentasaccharide mimetics featuring either a reducing end deoxynojirimycin or cyclophellitol moiety. This work provides valuable tools to deepen the understanding of Psl biosynthesis, its function in biofilm formation, and its contribution to antibiotic resistance. We demonstrate the enzyme’s actual endo−β–glucosidase activity, a means to monitor PslG activity in P. aeruginosa biofilms, and a blueprint for inhibitor design.
|
Feb 2025
|
|
I03-Macromolecular Crystallography
|
Isabelle B.
Pickles
,
Yurong
Chen
,
Olga
Moroz
,
Haley A.
Brown
,
Casper
De Boer
,
Zachary
Armstrong
,
Nicholas G. S.
Mcgregor
,
Marta
Artola
,
Jeroen D. C.
Codée
,
Nicole M.
Koropatkin
,
Herman S.
Overkleeft
,
Gideon J.
Davies
Diamond Proposal Number(s):
[24948, 32736]
Open Access
Abstract: α-Amylases are the workhorse enzymes of starch degradation. They are central to human health, including as targets for anti-diabetic compounds, but are also the key enzymes in the industrial processing of starch for biofuels, corn syrups, brewing and detergents. Dissection of the activity, specificity and stability of α-amylases is crucial to understanding their biology and allowing their exploitation. Yet, functional characterization lags behind DNA sequencing and genomics; and new tools are required for rapid analysis of α-amylase function. Here, we design, synthesize and apply new branched α-amylase activity-based probes. Using both α-1,6 branched and unbranched α-1,4 maltobiose activity-based probes we were able to explore the stability and substrate specificity of both a panel of human gut microbial α-amylases and a panel of industrially relevant α-amylases. We also demonstrate how we can detect and annotate the substrate specificity of α-amylases in the complex cell lysate of both a prominent gut microbe and a diverse compost sample by in-gel fluorescence and mass spectrometry. A toolbox of starch-active activity-based probes will enable rapid functional dissection of α-amylases. We envisage activity-based probes contributing to better selection and engineering of enzymes for industrial application as well as fundamental analysis of enzymes in human health.
|
Nov 2024
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[32736]
Abstract: The human Golgi α-mannosidase, hGMII, removes two mannose residues from GlcNAc-Man5GlcNAc2 to produce GlcNAcMan3GlcNAc2, the precursor of all complex N-glycans including tumour-associated ones. The natural product GMII inhibitor, swainsonine, blocks processing of cancer-associated N-glycans, but also inhibits the four other human α-mannosidases, rendering it unsuitable for clinical use. Our previous structure-guided screening of iminosugar pyrrolidine and piperidine fragments identified two micromolar hGMII inhibitors occupying the enzyme active pockets in adjacent, partially overlapping sites. Here we demonstrate that fusing these fragments yields swainsonine-configured indolizidines featuring a C3-substituent that act as selective hGMII inhibitors. Our structure-guided GMII-selective inhibitor design complements a recent combinatorial approach that yielded similarly configured and substituted indolizidine GMII inhibitors, and holds promise for the potential future development of anti-cancer agents targeting Golgi N-glycan processing.
|
Sep 2024
|
|
I24-Microfocus Macromolecular Crystallography
|
Christa
Litschko
,
Valerio
Di Domenico
,
Julia
Schultz
,
Sizhe
Li
,
Olga G.
Ovchinnikova
,
Thijs
Voskuilen
,
Andrea
Bethe
,
Javier O.
Cifuente
,
Alberto
Marina
,
Insa
Budde
,
Tim A.
Mast
,
Małgorzata
Sulewska
,
Monika
Berger
,
Falk F. R.
Buettner
,
Todd L.
Lowary
,
Chris
Whitfield
,
Jeroen D. C.
Codée
,
Mario
Schubert
,
Marcelo E.
Guerin
,
Timm
Fiebig
Diamond Proposal Number(s):
[28360]
Open Access
Abstract: Capsules are long-chain carbohydrate polymers that envelop the surfaces of many bacteria, protecting them from host immune responses. Capsule biosynthesis enzymes are potential drug targets and valuable biotechnological tools for generating vaccine antigens. Despite their importance, it remains unknown how structurally variable capsule polymers of Gram-negative pathogens are linked to the conserved glycolipid anchoring these virulence factors to the bacterial membrane. Using Actinobacillus pleuropneumoniae as an example, we demonstrate that CpsA and CpsC generate a poly(glycerol-3-phosphate) linker to connect the glycolipid with capsules containing poly(galactosylglycerol-phosphate) backbones. We reconstruct the entire capsule biosynthesis pathway in A. pleuropneumoniae serotypes 3 and 7, solve the X-ray crystal structure of the capsule polymerase CpsD, identify its tetratricopeptide repeat domain as essential for elongating poly(glycerol-3-phosphate) and show that CpsA and CpsC stimulate CpsD to produce longer polymers. We identify the CpsA and CpsC product as a wall teichoic acid homolog, demonstrating similarity between the biosynthesis of Gram-positive wall teichoic acid and Gram-negative capsules.
|
Jul 2024
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[24948, 18598]
Open Access
Abstract: The sulfolipid sulfoquinovosyl diacylglycerol (SQDG), produced by plants, algae, and cyanobacteria, constitutes a major sulfur reserve in the biosphere. Microbial breakdown of SQDG is critical for the biological utilization of its sulfur. This commences through release of the parent sugar, sulfoquinovose (SQ), catalyzed by sulfoquinovosidases (SQases). These vanguard enzymes are encoded in gene clusters that code for diverse SQ catabolic pathways. To identify, visualize and isolate glycoside hydrolase CAZY-family 31 (GH31) SQases in complex biological environments, we introduce SQ cyclophellitol-aziridine activity-based probes (ABPs). These ABPs label the active site nucleophile of this enzyme family, consistent with specific recognition of the SQ cyclophellitol-aziridine in the active site, as evidenced in the 3D structure of Bacillus megaterium SQase. A fluorescent Cy5-probe enables visualization of SQases in crude cell lysates from bacteria harbouring different SQ breakdown pathways, whilst a biotin-probe enables SQase capture and identification by proteomics. The Cy5-probe facilitates monitoring of active SQase levels during different stages of bacterial growth which show great contrast to more traditional mRNA analysis obtained by RT-qPCR. Given the importance of SQases in global sulfur cycling and in human microbiota, these SQase ABPs provide a new tool with which to study SQase occurrence, activity and stability.
|
Apr 2024
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Tim P.
Ofman
,
Jurriaan J. A.
Heming
,
Alba
Nin-Hill
,
Florian
Küllmer
,
Elisha
Moran
,
Megan
Bennett
,
Roy
Steneker
,
Anne-Mei
Klein
,
Gijs
Ruijgrok
,
Ken
Kok
,
Zach W. B.
Armstrong
,
Johannes M. F. G.
Aerts
,
Gijsbert A.
Van Der Marel
,
Carme
Rovira
,
Gideon J.
Davies
,
Marta
Artola
,
Jeroen D. C.
Codée
,
Hermen S.
Overkleeft
Diamond Proposal Number(s):
[32736, 24948]
Open Access
Abstract: Glycoside hydrolases (glycosidases) take part in myriad biological processes and are important therapeutic targets. Competitive and mechanism-based inhibitors are useful tools to dissect their biological role and comprise a good starting point for drug discovery. The natural product, cyclophellitol, a mechanism-based, covalent and irreversible retaining β-glucosidase inhibitor has inspired the design of diverse α- and β-glycosidase inhibitor and activity-based probe scaffolds. Here, we sought to deepen our understanding of the structural and functional requirements of cyclophellitol-type compounds for effective human α-glucosidase inhibition. We synthesized a comprehensive set of α-configured 1,2- and 1,6-cyclophellitol analogues bearing a variety of electrophilic traps. The inhibitory potency of these compounds was assessed towards both lysosomal and ER retaining α-glucosidases. These studies revealed the 1,6-cyclophellitols to be the most potent retaining α-glucosidase inhibitors, with the nature of the electrophile determining inhibitory mode of action (covalent or non-covalent). DFT calculations support the ability of the 1,6-cyclophellitols, but not the 1,2-congeners, to adopt conformations that mimic either the Michaelis complex or transition state of α-glucosidases.
|
Apr 2024
|
|
I03-Macromolecular Crystallography
|
Alexandra
Males
,
Ken
Kok
,
Alba
Nin-Hill
,
Nicky
De Koster
,
Sija
Van Den Beukel
,
Thomas J. M.
Beenakker
,
Gijsbert A.
Van Der Marel
,
Jeroen D. C.
Codée
,
Johannes M. F. G.
Aerts
,
Herman S.
Overkleeft
,
Carme
Rovira
,
Gideon J.
Davies
,
Marta
Artola
Diamond Proposal Number(s):
[24948]
Open Access
Abstract: Class I inverting exo-acting α-1,2-mannosidases (CAZY family GH47) display an unusual catalytic itinerary featuring ring-flipped mannosides, 3S1 → 3H4‡ → 1C4. Conformationally locked 1C4 compounds, such as kifunensine, display nanomolar inhibition but large multigene GH47 mannosidase families render specific “isoform-dependent” inhibition impossible. Here we develop a bump-and-hole strategy in which a new mannose-configured 1,6-trans-cyclic sulfamidate inhibits α-D-mannosidases by virtue of its 1C4 conformation. This compound does not inhibit the wild-type GH47 model enzyme by virtue of a steric clash, a “bump”, in the active site. An L310S (a conserved residue amongst human GH47 enzymes) mutant of the model Caulobacter GH47 awoke 574 nM inhibition of the previously dormant inhibitor, confirmed by structural analysis of a 0.97 Å structure. Considering that L310 is a conserved residue amongst human GH47 enzymes, this work provides a unique framework for future biotechnological studies on N-glycan maturation and ER associated degradation by isoform-specific GH47 α-D-mannosidase inhibition through a bump-and-hole approach.
|
Nov 2023
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[24948, 18598]
Open Access
Abstract: Bacteria and yeasts grow on biomass polysaccharides by expressing and excreting a complex array of glycoside hydrolase (GH) enzymes. Identification and annotation of such GH pools, which are valuable commodities for sustainable energy and chemistries, by conventional means (genomics, proteomics) are complicated, as primary sequence or secondary structure alignment with known active enzymes is not always predictive for new ones. Here we report a “low-tech”, easy-to-use, and sensitive multiplexing activity-based protein-profiling platform to characterize the xyloglucan-degrading GH system excreted by the soil saprophyte, Cellvibrio japonicus, when grown on xyloglucan. A suite of activity-based probes bearing orthogonal fluorophores allows for the visualization of accessory exo-acting glycosidases, which are then identified using biotin-bearing probes. Substrate specificity of xyloglucanases is directly revealed by imbuing xyloglucan structural elements into bespoke activity-based probes. Our ABPP platform provides a highly useful tool to dissect xyloglucan-degrading systems from various sources and to rapidly select potentially useful ones. The observed specificity of the probes moreover bodes well for the study of other biomass polysaccharide-degrading systems, by modeling probe structures to those of desired substrates.
|
Nov 2023
|
|
I03-Macromolecular Crystallography
|
Chi-Lin
Kuo
,
Qin
Su
,
Adrianus M. C. H.
Van Den Nieuwendijk
,
Thomas J. M.
Beenakker
,
Wendy A.
Offen
,
Lianne I.
Willems
,
Rolf. G.
Boot
,
Alexi J.
Sarris
,
André R. A.
Marques
,
Jeroen D. C.
Codée
,
Gijsbert A.
Van Der Marel
,
Bogdan I.
Florea
,
Gideon J.
Davies
,
Herman S.
Overkleeft
,
Johannes M. F. G.
Aerts
Abstract: Acid β-galactosidase (GLB1) and galactocerebrosidase (GALC) are retaining exo-β-galactosidases involved in lysosomal glycoconjugate metabolism. Deficiency of GLB1 may result in the lysosomal storage disorders GM1 gangliosidosis, Morquio B syndrome, and galactosialidosis, and deficiency of GALC may result in Krabbe disease. Activity-based protein profiling (ABPP) is a powerful technique to assess the activity of retaining glycosidases in relation to health and disease. This work describes the use of fluorescent and biotin-carrying activity-based probes (ABPs) to assess the activity of both GLB1 and GALC in cell lysates, culture media, and tissue extracts. The reported ABPs, which complement the growing list of retaining glycosidase ABPs based on configurational isomers of cyclophellitol, should assist in fundamental and clinical research on various β-galactosidases, whose inherited deficiencies cause debilitating lysosomal storage disorders.
|
Oct 2023
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[24948]
Open Access
Abstract: Degradation of the extracellular matrix (ECM) supports tissue integrity and homeostasis, but is also a key factor in cancer metastasis. Heparanase (HPSE) is a mammalian ECM-remodeling enzyme with β-D-endo-glucuronidase activity overexpressed in several malignancies, and is thought to facilitate tumor growth and metastasis. By this virtue, HPSE is considered an attractive target for the development of cancer therapies, yet to date no HPSE inhibitors have progressed to the clinic. Here we report on the discovery of glucurono-configured cyclitol derivatives featuring simple substituents at the 4-O-position as irreversible HPSE inhibitors. We show that these compounds, unlike glucurono-cyclophellitol, are selective for HPSE over β-D-exo-glucuronidase (GUSB), also in platelet lysate. The observed selectivity is induced by steric and electrostatic interactions of the substituents at the 4-O-position. Crystallographic analysis supports this rationale for HPSE selectivity, and computer simulations provide insights in the conformational preferences and binding poses of the inhibitors, which we believe are good starting points for the future development of HPSE-targeting antimetastatic cancer drugs.
|
Dec 2022
|
|