B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
|
Diamond Proposal Number(s):
[26588]
Abstract: Porous boron nitride (BN) has proven promising as a novel class of inorganic materials in the field of separations and particularly adsorption. Owing to its high surface area and thermal stability, porous BN has been researched for CO2 capture and water cleaning, for instance. However, research remains at the laboratory scale due to a lack of understanding of the formation mechanism of porous BN, which is largely a “black box” and prevents scale up. Partial reaction pathways have been unveiled, but they omit critical steps in the formation, including the porosity development, which is key to adsorption. To unlock the potential of porous BN at a larger scale, we have investigated its formation from the perspective of both chemical formation and porosity development. We have characterized reaction intermediates obtained at different temperatures with a range of analytical and spectroscopic tools. Using these analyses, we propose a mechanism highlighting the key stages of BN formation, including intermediates and gaseous species formed in the process. We identified the crucial formation of nonporous carbon nitride to form porous BN with release of porogens, such as CO2. This work paves the way for the use of porous BN at an industrial level for gas and liquid separations.
|
Dec 2021
|
|
I11-High Resolution Powder Diffraction
I12-JEEP: Joint Engineering, Environmental and Processing
|
Kieran W. P.
Orr
,
Sean M.
Collins
,
Emily M.
Reynolds
,
Frank
Nightingale
,
Hanna L. B.
Bostroem
,
Simon J.
Cassidy
,
Daniel M.
Dawson
,
Sharon E.
Ashbrook
,
Oxana
Magdysyuk
,
Paul A.
Midgley
,
Andrew L.
Goodwin
,
Hamish H.-M.
Yeung
Diamond Proposal Number(s):
[20946, 18786]
Open Access
Abstract: Control over the spatial distribution of components in metal–organic frameworks has potential to unlock improved performance and new behaviour in separations, sensing and catalysis. We report an unprecedented single-step synthesis of multi-component metal–organic framework (MOF) nanoparticles based on the canonical ZIF-8 (Zn) system and its Cd analogue, which form with a core–shell structure whose internal interface can be systematically tuned. We use scanning transmission electron microscopy, X-ray energy dispersive spectroscopy and a new composition gradient model to fit high-resolution X-ray diffraction data to show how core–shell composition and interface characteristics are intricately controlled by synthesis temperature and reaction composition. Particle formation is investigated by in situ X-ray diffraction, which reveals that the spatial distribution of components evolves with time and is determined by the interplay of phase stability, crystallisation kinetics and diffusion. This work opens up new possibilities for the control and characterisation of functionality, component distribution and interfaces in MOF-based materials.
|
Feb 2021
|
|
I11-High Resolution Powder Diffraction
|
Lauren N.
Mchugh
,
Matthew J.
Mcpherson
,
Laura J.
Mccormick
,
Samuel A.
Morris
,
Paul S.
Wheatley
,
Simon J.
Teat
,
David
Mckay
,
Daniel M.
Dawson
,
Charlotte E. F.
Sansome
,
Sharon E.
Ashbrook
,
Corinne A.
Stone
,
Martin W.
Smith
,
Russell E.
Morris
Abstract: Highly porous metal–organic frameworks (MOFs), which have undergone exciting developments over the past few decades, show promise for a wide range of applications. However, many studies indicate that they suffer from significant stability issues, especially with respect to their interactions with water, which severely limits their practical potential. Here we demonstrate how the presence of ‘sacrificial’ bonds in the coordination environment of its metal centres (referred to as hemilability) endows a dehydrated copper-based MOF with good hydrolytic stability. On exposure to water, in contrast to the indiscriminate breaking of coordination bonds that typically results in structure degradation, it is non-structural weak interactions between the MOF’s copper paddlewheel clusters that are broken and the framework recovers its as-synthesized, hydrated structure. This MOF retained its structural integrity even after contact with water for one year, whereas HKUST-1, a compositionally similar material that lacks these sacrificial bonds, loses its crystallinity in less than a day under the same conditions.
|
Aug 2018
|
|
B18-Core EXAFS
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[14239, 13284]
Abstract: The rhodium(III) hydrogarnets Ca3Rh2(OH)12 and Sr3Rh2(OH)12 crystallize as polycrystalline powders under hydrothermal conditions at 200 °C from RhCl3·3H2O and either Ca(OH)2 or Sr(OH)2 in either 12 M NaOH or KOH. Rietveld refinements against synchrotron powder X-ray diffraction (XRD) data allow the first crystal structures of the two materials to be determined. If BaO2 is used as a reagent and the concentration of hydroxide increased to hydroflux conditions (excess NaOH), then single crystals of a new complex rhodium hydroxide, BaNaRh(OH)6, are formed in a phase-pure sample, with sodium included from the flux. Structure solution from single-crystal XRD data reveals isolated octahedral Rh centers that share hydroxides with 10-coordinate Ba and two independent 8-coordinate Na sites. 23Na magic-angle spinning NMR confirms the presence of the two crystallographically distinct Na sites and also verifies the diamagnetic nature of the sample, expected for Rh(III). The thermal behavior of the hydroxides on heating in air was investigated using X-ray thermodiffractometry, showing different decomposition pathways for each material. Ca3Rh2(OH)12 yields CaRh2O4 and CaO above 650 °C, from which phase-pure CaRh2O4 is isolated by washing with dilute nitric acid, a material previously only reported by high-pressure or high-temperature synthesis. Sr3Rh2(OH)12 decomposes to give a less crystalline material with a powder XRD pattern that is matched to the 2H-layered hexagonal perovskite Sr6Rh5O15, which contains mixed-valent Rh3+/4+, confirmed by Rh K-edge XANES spectroscopy. On heating BaNaRh(OH)6, a complex set of decomposition events takes place via transient phases.
|
Aug 2018
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[11070]
Open Access
Abstract: The templated zeolite-analogue GaPO-34 (CHA structure type) crystallises from a gel precursor Ga2O3:2H3PO4:1HF:1.7SDA:70H2O (where SDA = structure directing agent), treated hydrothermally for 24 hours at 170 °C using either pyridine or 1-methylimizadole as SDA and one of either poorly crystalline ε-Ga2O3 or γ-Ga2O3 as gallium precursor. If the same gels are stirred for periods shorter than 2 hours but treated under identical hydrothermal conditions, then a second phase crystallises, free of GaPO-34. If β-Ga2O3 is used as a reagent only the second phase is found to crystallise, irrespective of gel aging time. The competing phase, which we denote GaPO-34A, has been structurally characterised using synchrotron powder X-ray diffraction for the pyridine material, GaPO-34A(pyr), and using single-crystal X-ray diffraction for the 1-methylimiazole material, GaPO-34A(mim). The structure of GaPO-34A(pyr), P1 , a = 10.22682(6) Å, b = 12.09585(7) Å, c = 13.86713(8) Å, α = 104.6531(4) °, β = 100.8111(6) °, γ = 102.5228(6) °, contains 7 unique gallium sites and 6 phosphorus sites, with empirical formula [Ga7P6O24(OH)2F3(H2O)2].2(C5NH6). GaPO-34A(mim) is isostructural but is modelled as a half volume unit cell, P1 , a = 5.0991(2) Å, b = 12.0631(6) Å, c = 13.8405(9) Å, α = 104.626(5) °, β = 100.346(5) °, γ = 101.936(4) °, with a gallium and a bridging fluoride partially occupied and two partially occupied SDA sites. Solid-state 31P and 71Ga NMR spectroscopy confirms the structural complexity of GaPO-34A with signals resulting from overlapping lineshapes from multiple Ga and P sites, while 1H and 13C solid-state NMR spectra confirm the presence of the protonated SDA and provide evidence for disorder in the SDA. The protonated SDA is located in 14-ring one-dimensional channels with hydrogen bonding deduced from the SDA nitrogens to framework oxygen distances. Upon thermal treatment to investigate SDA removal, structure collapse occurs, which may be due the large number of bridging hydroxides and fluorides in the as-made material, and the unequal amounts of gallium and phosphorus present.
|
Nov 2017
|
|
I11-High Resolution Powder Diffraction
|
Daniel S.
Firth
,
Samuel A.
Morris
,
Paul S.
Wheatley
,
Samantha E.
Russell
,
Alexandra M. Z.
Slawin
,
Daniel M.
Dawson
,
Alvaro
Mayoral
,
Maksym
Opanasenko
,
Miroslav
Polozij
,
Jiri
Cejka
,
Petr
Nachtigall
,
Russell E.
Morris
Abstract: The hydrothermal synthesis of a zeolite, with properties suitable for use in the ADOR (Assembly-Disassembly-Organisation-Reassembly) process, has been designed and a zeolite, called SAZ-1, successfully prepared. This zeolite has then been used as a parent in the ADOR process and two new daughter zeolites, IPC-15 and IPC-16, have been prepared. The X-ray powder diffraction patterns of the new zeolites match well those predicted using computational methods. The three materials, form an isoreticular series with decreasing pores size from 14-ring to 12-ring to 10-ring.
|
Jun 2017
|
|
I11-High Resolution Powder Diffraction
|
Samuel A.
Morris
,
Giulia P. M.
Bignami
,
Yuyang
Tian
,
Marta
Navarro
,
Daniel S.
Firth
,
Jiří
Čejka
,
Paul S.
Wheatley
,
Daniel M.
Dawson
,
Wojciech A.
Slawinski
,
David S.
Wragg
,
Russell E.
Morris
,
Sharon E.
Ashbrook
Abstract: The assembly–disassembly–organization–reassembly (ADOR) mechanism is a recent method for preparing inorganic framework materials and, in particular, zeolites. This flexible approach has enabled the synthesis of isoreticular families of zeolites with unprecedented continuous control over porosity, and the design and preparation of materials that would have been difficult—or even impossible—to obtain using traditional hydrothermal techniques. Applying the ADOR process to a parent zeolite with the UTL framework topology, for example, has led to six previously unknown zeolites (named IPC-n, where n = 2, 4, 6, 7, 9 and 10). To realize the full potential of the ADOR method, however, a further understanding of the complex mechanism at play is needed. Here, we probe the disassembly, organization and reassembly steps of the ADOR process through a combination of in situ solid-state NMR spectroscopy and powder X-ray diffraction experiments. We further use the insight gained to explain the formation of the unusual structure of zeolite IPC-6.
|
Apr 2017
|
|
I11-High Resolution Powder Diffraction
|
A. Lorena
Picone
,
Stewart J.
Warrender
,
Alexandra M. Z.
Slawin
,
Daniel M.
Dawson
,
Sharon E.
Ashbrook
,
Paul A.
Wright
,
Stephen P.
Thompson
,
Lucia
Gaberova
,
Philip L.
Llewellyn
,
Beatrice
Moulin
,
Alexandre
Vimont
,
Marco
Daturi
,
Min Bum
Park
,
Sam Kyung
Sung
,
In-Sik
Nam
,
Suk Bong
Hong
Abstract: Copper cyclam (cyclam = 1,4,8,11-tetraazacyclotetradecane) and tetraethylammonium (TEA+) act as co-templates for the hydrothermal crystallisation of the silicoaluminophosphate SAPO STA-7, as determined by UV–visible, ESR and solid-state MAS NMR spectroscopies, powder and single crystal X-ray diffraction and chemical analysis. Calcination of the as-prepared solid in flowing oxygen removes all organics to leave Cu(II),H-SAPO STA-7 (hereafter Cu-SAPO STA-7) in which the presence of bridging hydroxyl groups is confirmed by IR and the presence of multiple environments for Cu2+ is shown by IR using NO as a probe molecule. Rietveld analysis of synchrotron X-ray powder diffraction data collected over the temperature range 293–673 K locates Cu2+ cations distributed over four sites: above six membered rings (6MRs) and in the three different 8MR windows of the STA-7 structure. Cu-SAPO STA-7 is a very good catalyst for the selective catalytic reduction of NO with NH3, in the presence or absence of water vapour, so that this approach represents an efficient and effective route to copper-containing SAPO catalysts that obviates the need for an aqueous Cu2+ ion exchange step during preparation.
|
Dec 2011
|
|
I11-High Resolution Powder Diffraction
|
Abstract: Sodium niobate (NaNbO3) has a particularly complex phase diagram, with a series of phase transitions as a function of temperature and pressure, and even at room temperature a number of different structural variations have been suggested. Recent work has demonstrated that bulk powders of NaNbO3, prepared using a variety of synthetic approaches, contain a mixture of perovskite phases; the commonly reported Pbcm phase and a second, polar phase tentatively identified as belonging to space group P21ma. The two phases exhibit very similar 23Na MAS NMR spectra, although high-resolution MQMAS spectra were able to distinguish between them. Here, we investigate whether different perovskite polymorphs can be distinguished and/or identified using a variety of 93Nb NMR methods, including MAS, MQMAS and wideline experiments. We compare the experimental results obtained for these more common perovskite materials to those for the metastable ilmenite polymorph of NaNbO3. Our experimental results are supported by first-principles calculations of NMR parameters using a planewave pseudopotential approach. The calculated NMR parameters appear very different for each of the phases investigated, but high forces on the atoms indicate many of the structural models derived from diffraction require optimisation of the atomic coordinates. After geometry optimisation, most of these perovskite phases exhibit very similar NMR parameters, in contrast to recent work where it was suggested that 93Nb provides a useful tool for distinguishing NaNbO3 polymorphs. Finally, we consider the origin of the quadrupolar coupling in these materials, and its dependence on the deviation from ideality of the NbO6 octahedra.
|
Mar 2011
|
|