I12-JEEP: Joint Engineering, Environmental and Processing
|
Yuanbo T.
Tang
,
Chinnapat
Panwisawas
,
Benjamin M.
Jenkins
,
Junliang
Liu
,
Zhao
Shen
,
Enrico
Salvati
,
Yilun
Gong
,
Joseph N.
Ghoussoub
,
Stefan
Michalik
,
Bryan
Roebuck
,
Paul A. J.
Bagot
,
Sergio
Lozano-Perez
,
Chris R. M.
Grovenor
,
Michael P.
Moody
,
Alexander M.
Korsunsky
,
David M.
Collins
,
Roger C.
Reed
Diamond Proposal Number(s):
[23674]
Open Access
Abstract: A supersaturated phase microstructure is produced in Ni-based superalloys using laser powder bed fusion (L-PBF) – the cooling rate arising from the process is shown to suppress the solid-state precipitation of the phase. The response of the material to a heat treatment therefore requires new understanding at the fundamental level, since the first population of precipitate forms upon heating, in contrast to cooling from homogenisation above the solvus. Here, we have interrogated two new nickel-based superalloys designed for the L-PBF technology, both in situ and ex situ, at multiple length scales using advanced characterisation methods. First, we conducted in situ synchrotron X-ray diffraction during various heat treatments to trace the evolution of the volume fraction with temperature. The first structural changes were detected at an unexpectedly low temperature of 445 °C. Second, the temperature for nucleation and its sensitivity to heating rate was studied using an electrical resistivity method. Then, the composition upon heating, isothermal holding and cooling is analysed using atom probe tomography (APT), the result is rationalised by further scanning-transmission electron microscopy and nanoscale secondary ion mass spectroscopy. Finally, static recrystallisation during isothermal exposure was investigated, which occurs within minutes. This work sheds light on a new strategy of tailoring microstructure for additively manufactured superalloys by manipulation of the precipitate distribution upon heating.
|
Jan 2023
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[26376]
Open Access
Abstract: Three-dimensional X-ray diffraction (3DXRD) is shown to be feasible at the I12 Joint Engineering, Environmental and Processing (JEEP) beamline of Diamond Light Source. As a demonstration, a microstructually simple low-carbon ferritic steel was studied in a highly textured and annealed state. A processing pipeline suited to this beamline was created, using software already established in the 3DXRD user community, enabling grain centre-of-mass positions, orientations and strain tensor elements to be determined. Orientations, with texture measurements independently validated from electron backscatter diffraction (EBSD) data, possessed a ∼0.1° uncertainty, comparable with other 3DXRD instruments. The spatial resolution was limited by the far-field detector pixel size; the average of the grain centre of mass position errors was determined as ±∼80 µm. An average per-grain error of ∼1 × 10−3 for the elastic strains was also measured; this could be reduced in future experiments by improving sample preparation, geometry calibration, data collection and analysis techniques. Application of 3DXRD onto I12 shows great potential, where its implementation is highly desirable due to the flexible, open architecture of the beamline. User-owned or designed sample environments can be used, thus 3DXRD could be applied to previously unexplored scientific areas.
|
Jul 2022
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[21103]
Abstract: The effect of Strain Path Changes (SPCs) on the mechanical properties and crystal-level features of deformation for a single phase, ferritic steel has been investigated. SPCs were applied via a two-step deformation process, which included pre-straining via cold rolling, followed by uniaxial tension. The pre-strain magnitude and direction, as well as the tensile direction, varied between the specimens. The role of texture and micromechanics were examined in-situ, via Synchrotron X-ray Diffraction (SXRD), and ex-situ, via Electron Backscatter Diffraction (EBSD). Abrupt strain paths (i.e. strain paths where the pre-strain and the subsequent loading directions differ; here they are orthogonal) result in a significant ductility reduction, becoming more prevalent for high pre-strain magnitudes. The macroscopic response, as well as the texture configuration were greatly dependent on the pre-strain direction but were insensitive to the direction of uniaxial tension. Increasing pre-strain magnitudes resulted in a stagnation of lattice strain hardening rates in all macroscopic directions and in a significant increase in the Geometrically Necessary Dislocation (GND) densities. This was vastly increased for specimens rolled perpendicular to the as-received prior rolling direction. No correlation was found between the GND density and the grain orientation, eliminating this as a controlling ductility factor for BCC ferrite. Instead, the initial texture and the texture developed in a subsequent pre-strain influences the density of dislocations accumulated in all grains, and ultimately determines ductility.
|
Apr 2022
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[17222]
Abstract: Component failure due to cold dwell fatigue of titanium and its alloys is a long-standing problem which has significant safety and economic implications to the aviation industry. This can be addressed by understanding the governing mechanisms of time dependent plasticity behaviour of Ti at low temperatures. Here, stress relaxation tests were performed at four different temperatures on three major alloy systems: commercially pure titanium (two alloys with different oxygen content), Ti-6Al-4V (two microstructures with differing phase fractions) and Ti-6Al-2Sn-4Zr-Mo (two alloys with different Mo content =2 or 6, and portion of phase). Key parameters controlling the time dependent plasticity were determined as a function of temperature. Both activation volume and energy were found to increase with temperature in all six alloys. It was found that the dwell fatigue effect is more significant by oxygen alloying but is suppressed by the addition of Mo. The presence of the phase did not strongly affect the dwell fatigue, however, it was suppressed at high temperature due to the low strain rate and strain rate sensitivity.
|
Apr 2022
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[17222]
Abstract: There is a long-standing technological problem in which a stress dwell during cyclic loading at room temperature in Ti causes a drastic fatigue life reduction. To better understand the material characteristics that control or exacerbate this behaviour, evaluation of the time dependent plasticity of the main prismatic and basal slip systems is critical. Incorporating the influence of operating temperatures and common alloying elements on cold dwell fatigue will be beneficial for future alloy design to address this problem. In this work, characterisation of the time dependent plastic behaviour of two commercially pure titanium samples (grade 1 and grade 4) with different oxygen content at 4 different temperatures (room temperature, 75
C, 145
C and 250
C) was performed during stress relaxation using synchrotron X-ray diffraction. Key parameters that govern the dislocation motion were determined for the major prismatic and basal slip systems as a function of temperature and oxygen content by calibrating a crystal plasticity finite element model with the measured lattice strain relaxation responses. From the temperatures assessed, 75
C was found to be the worse-case scenario, where the macroscopic plastic strain accumulation was significant during a relaxation cycle due to the greatest activity of both prism and basal slip systems. As the temperature increases, the contribution of thermal energy becomes greater than mechanical energy for dislocation glide. Oxygen was found to have a stronger strengthening effect on prism slip over basal slip, through a significant change in their respective critical resolved shear stresses. This effect becomes more significant in high oxygen content commercially pure Ti.
|
May 2021
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Yunhui
Chen
,
Samuel J.
Clark
,
David M.
Collins
,
Sebastian
Marussi
,
Simon A.
Hunt
,
Danielle
Fenech
,
Thomas
Connolley
,
Robert C.
Atwood
,
Oxana V.
Magdysyuk
,
Gavin J.
Baxter
,
Martyn A.
Jones
,
Chu Lun Alex
Leung
,
Peter D.
Lee
Diamond Proposal Number(s):
[20096]
Abstract: The governing mechanistic behaviour of Directed Energy Deposition Additive Manufacturing (DED-AM) is revealed by a combined in situ and operando synchrotron X-ray imaging and diffraction study of a nickel-base superalloy, IN718. Using a unique DAE-AM process replicator, real-space imaging enables quantification of the melt-pool boundary and flow dynamics during solidification. This imaging knowledge was also used to informed precise diffraction measurements of temporally resolved microstructural phases during transformation and stress development with a spatial resolution of 100 µm. The diffraction quantified thermal gradient enabled a dendritic solidification microstructure to be predicted and coupled to the stress orientation and magnitude. The fast cooling rate entirely suppressed the formation of secondary phases or recrystallisation in the solid-state. Upon solidification, the stresses rapidly increase to the yield strength during cooling. This insight, combined with the large solidification range of IN718 suggests that the accumulated plasticity exhausts the ductility of the alloy, causing liquation cracking. This study has revealed additional fundamental mechanisms governing the formation of highly non-equilibrium microstructures during DED-AM.
|
Mar 2021
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[16096]
Abstract: Thermal shocks are an important incident in operation of a pressure vessel which can have a significant impact on the structural integrity of the vessel. Often experiments that consider the state of the vessel before and after the thermal shock are used to evaluate the effects of the thermal shock. The studies can be complemented by time-resolved numerical simulations, which may be validated against the final state of the vessel obtained experimentally, to infer the transient response of the material. The transient response is important as the material experiences the highest level of stress in a short period which can induce catastrophic failure. This paper reports time-resolved experimental quantification of strain in reactor pressure vessel material during thermal shock measured by in-situ synchrotron diffraction. Specimens were extracted from a plate of nuclear pressure vessel steel with a nickel alloy cladding deposited by overlay welding. The specimens, with and without cracks, were subjected to thermal loading by heating then rapidly quenching the cladding in cold water. Strains were measured during thermal loading at a point near the crack tip from which the stress state around the crack tip was calculated and compared with a transient finite element model of the experiment. It was found that the peak near-tip stress occurred within the first second after the onset of rapid cooling. It was demonstrated from experimental measurements that the peak stress intensity factor occurred during thermal shock, rather than under steady conditions before or after the thermal shock. It was shown that although the finite element simulation predicts the steady state condition of the material after thermal shock, its transient response dependents significantly on a number of inputs with high uncertainty, making its time-resolved results unreliable for high-fidelity integrity assessments.
|
Oct 2020
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[17222]
Abstract: It is well known that titanium and some titanium alloys creep at ambient temperature, resulting in a significant fatigue life reduction when a stress dwell is included in the fatigue cycle. It is thought that localised time dependent plasticity in ‘soft’ grains oriented for easy plastic slip leads to load shedding and an increase in stress within a neighbouring ‘hard’ grain that is poorly oriented for easy slip. Quantifying this time dependent plasticity process is key to successfully predicting the complex cold dwell fatigue problem. In this work, synchrotron X-ray diffraction during stress relaxation experiments was performed to characterise the time dependent plastic behaviour of commercially pure titanium (grade 4). Lattice strains were measured by tracking the diffraction peak shift from multiple plane families (21 diffraction rings) as a function of their orientation with respect to the loading direction. The critical resolved shear stress, activation energy and activation volume were established for both prismatic and basal slip modes by fitting a crystal plasticity finite element model to the lattice strain relaxation responses measured along the loading axis for three strong reflections. Prismatic slip was the easier mode having both a lower critical resolved shear stress (
MPa and
MPa) and activation energy (
and
). The prism slip parameters correspond to a stronger strain rate sensitivity compared to basal slip. This slip system dependence on strain rate has a significant effect on stress redistribution to hard grain orientations during cold dwell fatigue.
|
Aug 2020
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[23674]
Abstract: The heat treatment response of the new superalloy ABD-900AM, designed specifically for additive manufacturing (AM), is studied. The as-fabricated microstructure is characterised at multiple length-scales including by X-ray synchrotron diffractometry and transmission Kikuchi diffraction imaging. The very high cooling rates arising during the process suppress γ′ precipitation; thus the details of heat treatment are shown to be important in establishing properties. The yield stress and tensile strength developed are marginally improved by super-solvus rather than sub-solvus heat treatment, but the ductility is then compromised. The tensile behaviour is superior to the heritage alloy IN939 which has a comparable fraction of γ′; this is due to the larger refractory content of ABD-900AM and its finer scale precipitation. The internal strains developed during processing are sufficient to promote recrystallization during super-solvus heat treatment which breaks down microstructural anisotropy and promotes grain growth; however, this effect is absent for the sub-solvus case.
|
Aug 2020
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[18972]
Abstract: Synchrotron grazing incidence X-ray diffraction has been used to newly reveal the heating rate dependent oxidation reactions that develop on a polycrystalline nickel-based superalloy. A continuous layer of precursor oxide was shown to form during the heating stage. Their approximate growth rates, their effect on local surface compositions of the alloy substrate, and their degree of interface planarity are considered critical in determining subsequent oxidation reactions when held for extended thermal exposures. The precursor oxides were predominantly nickel or cobalt based (NiO/CoO and Co3O4/NiCo2O4). Following the fastest heating rates (40 °C min−1 and above), the stable Cr2O3 phase formed, inhibiting Ni or Co diffusion to the surface. At slower heating rates (10–20 °C min−1), no evidence of the stable Cr2O3 was found, even after 200 h at elevated thermal exposure, instead continued growth of the precursor oxides was observed. Heating at 5 °C min−1 gave rise to an intriguing zone where sufficient precursor and favourable kinetics enabled the formation of a spinel, NiCr2O4, surface layer. Cross sections observed with electron microscopy confirmed this to be planar and continuous. Heating at the slowest tested 2 °C min−1 contrarily gives a non-protective surface layer comprising an outwardly growing NiO/CoO precursor oxide on top of an inwardly growing mixed oxide. The quantities, interfacial morphologies of oxides of the precursor oxide grown and the possible thermodynamic reactions that lead to their formation are discussed.
|
Oct 2019
|
|