I11-High Resolution Powder Diffraction
|
Zi
Wang
,
Alena M.
Sheveleva
,
Daniel
Lee
,
Yinlin
Chen
,
Dinu
Iuga
,
W. Trent
Franks
,
Yujie
Ma
,
Jiangnan
Li
,
Lei
Li
,
Yongqiang
Cheng
,
Luke L.
Daemen
,
Sarah J.
Day
,
Anibal J.
Ramirez-Cuesta
,
Bing
Han
,
Alexander S.
Eggeman
,
Eric J. L.
Mcinnes
,
Floriana
Tuna
,
Sihai
Yang
,
Martin
Schroeder
Abstract: We report the modulation of reactivity of nitrogen dioxide (NO2) in a charged metal-organic framework (MOF) material, MFM-305-CH3 in which unbound N-centres are methylated and the cationic charge counter-balanced by Cl− ions in the pores. Uptake of NO2 into MFM-305-CH3 leads to reaction between NO2 and Cl– to give nitrosyl chloride (NOCl) and NO3− anions. A high dynamic uptake of 6.58 mmol g−1 at 298 K is observed for MFM-305-CH3 as measured using a flow of 500 ppm NO2 in He. In contrast, the analogous neutral material, MFM-305, shows a much lower uptake of 2.38 mmol g−1. The binding domains and reactivity of adsorbed NO2 molecules within MFM-305-CH3 and MFM-305 have been probed using in situ synchrotron X-ray diffraction, inelastic neutron scattering and by electron paramagnetic resonance, high-field solid-state nuclear magnetic resonance and UV-vis spectroscopies. The design of charged porous sorbents provides a new platform to control the reactivity of corrosive air pollutants.
|
Apr 2023
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Lixia
Guo
,
Joseph
Hurd
,
Meng
He
,
Wanpeng
Lu
,
Jiangnan
Li
,
Danielle
Crawshaw
,
Mengtian
Fan
,
Sergey A.
Sapchenko
,
Yinlin
Chen
,
Xiangdi
Zeng
,
Meredydd
Kippax-Jones
,
Wenyuan
Huang
,
Zhaodong
Zhu
,
Pascal
Manuel
,
Mark D.
Frogley
,
Daniel
Lee
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[30398]
Open Access
Abstract: The development of stable sorbent materials to deliver reversible adsorption of ammonia (NH3) is a challenging task. Here, we report the efficient capture and storage of NH3 in a series of robust microporous aluminium-based metal-organic framework materials, namely MIL-160, CAU-10-H, Al-fum, and MIL-53(Al). In particular, MIL-160 shows high uptakes of NH3 of 4.8 and 12.8 mmol g−1 at both low and high pressure (0.001 and 1.0 bar, respectively) at 298 K. The combination of in situ neutron powder diffraction, synchrotron infrared micro-spectroscopy and solid-state nuclear magnetic resonance spectroscopy reveals the preferred adsorption domains of NH3 molecules in MIL-160, with H/D site-exchange between the host and guest and an unusual distortion of the local structure of [AlO6] moieties being observed. Dynamic breakthrough experiments confirm the excellent ability of MIL-160 to capture of NH3 with a dynamic uptake of 4.2 mmol g−1 at 1000 ppm. The combination of high porosity, pore aperture size and multiple binding sites promotes the significant binding affinity and capacity for NH3, which makes it a promising candidate for practical applications.
|
Mar 2023
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Yu
Han
,
Yinlin
Chen
,
Yujie
Ma
,
Jamie
Bailey
,
Zi
Wang
,
Daniel
Lee
,
Alena M.
Sheveleva
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Mark D.
Frogley
,
Sarah J.
Day
,
Stephen P.
Thompson
,
Ben F.
Spencer
,
Marek
Nikiel
,
Pascal
Manuel
,
Danielle
Crawshaw
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[30398]
Open Access
Abstract: Benzene is an important air pollutant and a key chemical feedstock for the synthesis of cyclohexane. Because of the small difference of 0.6°C in their boiling points, the separation of benzene and cyclohexane is extremely challenging. Here, we report the high adsorption of benzene at low pressure and efficient separation of benzene/cyclohexane, achieved by the control of pore chemistry of two families of robust metal-organic frameworks, UiO-66 and MFM-300. At 298 K, UiO-66-CuII shows an exceptional adsorption of benzene of 3.92 mmol g−1 at 1.2 mbar and MFM-300(Sc) exhibits a high selectivity of 166 for the separation of benzene/cyclohexane (v/v = 1/1) mixture. In situ synchrotron X-ray diffraction and neutron powder diffraction, and multiple spectroscopic techniques reveal the binding mechanisms of benzene and cyclohexane in these materials. We also report the first example of direct visualization of reversible binding of benzene at an open Cu(II) site within metal-organic frameworks.
|
Feb 2023
|
|
I11-High Resolution Powder Diffraction
|
Jiangnan
Li
,
Zi
Wang
,
Yinlin
Chen
,
Yongqiang
Cheng
,
Luke L.
Daemen
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Sarah J.
Day
,
Anibal J.
Ramirez-Cuesta
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[31365]
Open Access
Abstract: Increasing levels of air pollution are driving the need for the development of new processes that take “waste-to-chemicals”. Herein, we report the capture and conversion under ambient conditions of a major air pollutant, NO2, using a robust metal-organic framework (MOF) material, Zr-bptc (H4bptc = 3,3′,5,5′-biphenyltetracarboxylic acid), comprising {Zr6(μ3-O)4(μ3-OH)4(COO)12} clusters linked by 4-connected bptc4– ligands in an ftw topology. At 298 K, Zr-bptc shows exceptional stability and adsorption of NO2 at both low (4.9 mmol g–1 at 10 mbar) and high pressures (13.8 mmol g–1 at 1.0 bar), as measured by isotherm experiments. Dynamic breakthrough experiments have confirmed the selective retention of NO2 by Zr-bptc at low concentrations under both dry and wet conditions. The immobilized NO2 can be readily transformed into valuable nitro compounds relevant to construction, agrochemical, and pharmaceutical industries. In situ crystallographic and spectroscopic studies reveal strong binding interactions of NO2 to the {Zr6(μ3-O)4(μ3-OH)4(COO)12} cluster node. This study paves a circular pathway to enable the integration of nitrogen-based air pollutants into the production of fine chemicals.
|
Oct 2022
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Jin
Chen
,
Qingqing
Mei
,
Yinlin
Chen
,
Christopher
Marsh
,
Bing
An
,
Xue
Han
,
Ian P.
Silverwood
,
Ming
Li
,
Yongqiang
Cheng
,
Meng
He
,
Xi
Chen
,
Weiyao
Li
,
Meredydd
Kippax-Jones
,
Danielle
Crawshaw
,
Mark D.
Frogley
,
Sarah J.
Day
,
Victoria
García-Sakai
,
Pascal
Manuel
,
Anibal J.
Ramirez-Cuesta
,
Sihai
Yang
,
Martin
Schroeder
Diamond Proposal Number(s):
[29649]
Open Access
Abstract: The development of materials showing rapid proton conduction with a low activation energy and stable performance over a wide temperature range is an important and challenging line of research. Here, we report confinement of sulfuric acid within porous MFM-300(Cr) to give MFM-300(Cr)·SO4(H3O)2, which exhibits a record-low activation energy of 0.04 eV, resulting in stable proton conductivity between 25 and 80 °C of >10–2 S cm–1. In situ synchrotron X-ray powder diffraction (SXPD), neutron powder diffraction (NPD), quasielastic neutron scattering (QENS), and molecular dynamics (MD) simulation reveal the pathways of proton transport and the molecular mechanism of proton diffusion within the pores. Confined sulfuric acid species together with adsorbed water molecules play a critical role in promoting the proton transfer through this robust network to afford a material in which proton conductivity is almost temperature-independent.
|
Jul 2022
|
|
I11-High Resolution Powder Diffraction
|
Shanshan
Liu
,
Yinlin
Chen
,
Bin
Yue
,
Chang
Wang
,
Bin
Qin
,
Yuchao
Chai
,
Guangjun
Wu
,
Jiangnan
Li
,
Xue
Han
,
Ivan
Da Silva
,
Pascal
Manuel
,
Sarah J.
Day
,
Naijia
Guan
,
Stephen P.
Thompson
,
Sihai
Yang
,
Landong
Li
Diamond Proposal Number(s):
[29649]
Abstract: The development of cost-effective sorbents for direct capture of trace CO 2 (<1%) from the atmosphere is an important and challenging task. Natural or commercial zeolites are promising sorbents, but their performance in adsorption of trace CO 2 has been poorly explored to date. Herein, we report a systematic study on capture of trace CO 2 by commercial faujasite zeolites, where we found that the extra-framework cations played a key role on their performance. Under dry conditions, Ba-X displays high dynamic uptake of 1.79 and 0.69 mmol g -1 at CO 2 concentrations of 10000 and 1000 ppm, respectively, and shows excellent recyclability in the temperature-swing adsorption processes. K-X exhibits perfect moisture resistance, and >95 % dry CO 2 uptake can be preserved under relative humidity of 74%. In situ solid-state NMR spectroscopy, synchrotron X-ray diffraction and neutron diffraction reveal two binding sites for CO 2 in these zeolites, namely the basic framework oxygen atoms and the divalent alkaline earth metal ions. This study unlocks the potential of low-cost natural zeolites for applications in direct air capture.
|
Jun 2022
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Jiangnan
Li
,
Gemma L.
Smith
,
Yinlin
Chen
,
Yujie
Ma
,
Meredydd
Kippax-Jones
,
Mengtian
Fan
,
Wanpeng
Lu
,
Mark D.
Frogley
,
Gianfelice
Cinque
,
Sarah
Day
,
Stephen P.
Thompson
,
Yongqiang
Cheng
,
Luke L.
Daemen
,
Anibal J.
Ramirez-Cuetos
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[28497, 29649]
Open Access
Abstract: We report reversible high capacity adsorption of SO2 in robust Zr-based metal-organic frameworks (MOFs). Zr-bptc (H4bptc = biphenyl-3,3’,5,5’-tetracarboxylic acid) shows a high SO2 uptake of 6.2 mmol g-1 at 0.1 bar and 298 K, reflecting excellent capture capability and removal of SO2 at low concentration (2500 ppm). Dynamic breakthrough experiments confirm that the introduction of amine, atomically-dispersed Cu(II) or heteroatomic sulphur sites into the pores enhance the capture of SO2 at low concentrations. The captured SO2 can be converted quantitatively to a pharmaceutical intermediate, aryl N-aminosulfonamide, thus converting waste to chemical values. In situ X-ray diffraction, infrared micro-spectroscopic and inelastic neutron scattering enable the visualisation of the binding domains of adsorbed SO2 molecules and host-guest binding dynamics in these materials at the atomic level. The refinement of pore environment plays a critical role in designing efficient sorbent materials.
|
Jun 2022
|
|
B18-Core EXAFS
B22-Multimode InfraRed imaging And Microspectroscopy
|
Yujie
Ma
,
Wanpeng
Lu
,
Xue
Han
,
Yinlin
Chen
,
Ivan
Da Silva
,
Daniel
Lee
,
Alena M.
Sheveleva
,
Zi
Wang
,
Jiangnan
Li
,
Weiyao
Li
,
Mengtian
Fan
,
Shaojun
Xu
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Yongqiang
Cheng
,
Svemir
Rudic
,
Pascal
Manuel
,
Mark D.
Frogley
,
Anibal J.
Ramirez-Cuesta
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[19850]
Open Access
Abstract: The presence of active sites in metal–organic framework (MOF) materials can control and affect their performance significantly in adsorption and catalysis. However, revealing the interactions between the substrate and active sites in MOFs at atomic precision remains a challenging task. Here, we report the direct observation of binding of NH3 in a series of UiO-66 materials containing atomically dispersed defects and open Cu(I) and Cu(II) sites. While all MOFs in this series exhibit similar surface areas (1111–1135 m2 g–1), decoration of the −OH site in UiO-66-defect with Cu(II) results in a 43% enhancement of the isothermal uptake of NH3 at 273 K and 1.0 bar from 11.8 in UiO-66-defect to 16.9 mmol g–1 in UiO-66-CuII. A 100% enhancement of dynamic adsorption of NH3 at a concentration level of 630 ppm from 2.07 mmol g–1 in UiO-66-defect to 4.15 mmol g–1 in UiO-66-CuII at 298 K is observed. In situ neutron powder diffraction, inelastic neutron scattering, and electron paramagnetic resonance, solid-state nuclear magnetic resonance, and infrared spectroscopies, coupled with modeling reveal that the enhanced NH3 uptake in UiO-66-CuII originates from a {Cu(II)···NH3} interaction, with a reversible change in geometry at Cu(II) from near-linear to trigonal coordination. This work represents the first example of structural elucidation of NH3 binding in MOFs containing open metal sites and will inform the design of new efficient MOF sorbents by targeted control of active sites for NH3 capture and storage.
|
May 2022
|
|
I11-High Resolution Powder Diffraction
|
Shanshan
Liu
,
Yinlin
Chen
,
Bin
Yue
,
Yuanxin
Nie
,
Yuchao
Chai
,
Guangjun
Wu
,
Jiangnan
Li
,
Xue
Han
,
Sarah J.
Day
,
Stephen P.
Thompson
,
Naijia
Guan
,
Sihai
Yang
,
Landong
Li
Diamond Proposal Number(s):
[31365]
Abstract: Adsorptive separation of light hydrocarbons by porous solids provides an energy-efficient alternative to state-of-the-art cryogenic distillation. However, an optimal balance between the cost, performance and stability of the sorbent material is yet to be achieved for industrial applications. Here, we report the efficient separation of C2 and C3 hydrocarbons by a faujasite zeolite (Na-X, Si/Al=1.23). A tandem configuration of two fixed-beds packed with Na-X affords complete dynamic separation of the ternary mixture of C2H2/C2H4/C2H6 (1/49.5/49.5; v/v/v) under ambient conditions. Pressure-swing desorption on the latter fixed-bed gives ethylene (>99.50%, 1.80 mmol g-1) and ethane (>99.99%, 1.41 mmol g-1). In situ synchrotron X-ray powder diffraction revealed the binding sites for C2H2 and C2H4 in Na-X. This study highlights the potential application of commercial zeolites for challenging industrial separations.
|
May 2022
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Sihai
Yang
,
Zongsu
Han
,
Jiangnan
Li
,
Wanpeng
Lu
,
Kunyun
Wang
,
Yinlin
Chen
,
Xiaoping
Zhang
,
Longfei
Lin
,
Xue
Han
,
Simon
Teat
,
Mark
Frogley
,
Wei
Shi
,
Peng
Cheng
Diamond Proposal Number(s):
[23782]
Abstract: Air pollutions by SO2 and NO2 have caused significant risks on the environment and human health. Understanding the mechanism of active sites within capture materials is of fundamental importance to the development of new clean-up technologies. Here we report the crystallographic observation of reversible coordinative binding of SO2 and NO2 on open Ni(II) sites in a metal-organic framework (NKU-100) incorporating an unprecedented {Ni 12 }-wheel, which exhibits six open Ni(II) sites on desolvation. Immobilised gas molecules are further stabilised by cooperative host-guest interactions comprised of hydrogen bonds, π ··· π interactions and dipole interactions. At 298 K and 1.0 bar, NKU-100 shows adsorption uptakes of 6.21 and 5.80 mmol g -1 for SO2 and NO2 , respectively. Dynamic breakthrough experiments have confirmed the selective retention of SO2 and NO2 at low concentrations under dry conditions. This work will inspire the future design of efficient sorbents for the capture of SO2 and NO2 .
|
Nov 2021
|
|