I18-Microfocus Spectroscopy
|
Alex L.
Riley
,
James
Cameron
,
Ian T.
Burke
,
Patrizia
Onnis
,
John M.
Macdonald
,
Catherine J.
Gandy
,
Richard A.
Crane
,
Patrick
Byrne
,
Sean
Comber
,
Adam P.
Jarvis
,
Karen
Hudson-Edwards
,
William M.
Mayes
Diamond Proposal Number(s):
[29808]
Open Access
Abstract: Iron and steel slags have a long history of both disposal and beneficial use in the coastal zone. Despite the large volumes of slag deposited, comprehensive assessments of potential risks associated with metal(loid) leaching from iron and steel by-products are rare for coastal systems. This study provides a national-scale overview of the 14 known slag deposits in the coastal environment of Great Britain (those within 100 m of the mean high-water mark), comprising geochemical characterisation and leaching test data (using both low and high ionic strength waters) to assess potential leaching risks. The seaward facing length of slag deposits totalled at least 76 km, and are predominantly composed of blast furnace (iron-making) slags from the early to mid-20th Century. Some of these form tidal barriers and formal coastal defence structures, but larger deposits are associated with historical coastal disposal in many former areas of iron and steel production, notably the Cumbrian coast of England. Slag deposits are dominated by melilite phases (e.g. gehlenite), with evidence of secondary mineral formation (e.g. gypsum, calcite) indicative of weathering. Leaching tests typically show lower element (e.g. Ba, V, Cr, Fe) release under seawater leaching scenarios compared to deionised water, largely ascribable to the pH buffering provided by the former. Only Mn and Mo showed elevated leaching concentrations in seawater treatments, though at modest levels (<3 mg/L and 0.01 mg/L, respectively). No significant leaching of potentially ecotoxic elements such as Cr and V (mean leachate concentrations <0.006 mg/L for both) were apparent in seawater, which micro-X-Ray Absorption Near Edge Structure (μXANES) analysis show are both present in slags in low valence (and low toxicity) forms. Although there may be physical hazards posed by extensive erosion of deposits in high-energy coastlines, the data suggest seawater leaching of coastal iron and steel slags in the UK is likely to pose minimal environmental risk.
|
Jun 2024
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[26409]
Abstract: Rozenite (FeSO4·4H2O) is a candidate mineral component of the polyhydrated sulfate deposits on the surface and in the subsurface of Mars. To better understand its behavior at temperature conditions prevailing on the Martian surface and aid its identification in ongoing and future Rover missions, we have carried out a combined experimental and computational study of the mineral’s structure and properties. We collected neutron powder difraction data at temperatures ranging from 21–290 K, room-temperature synchrotron X-ray data and Raman spectra. Moreover, first-principles calculations of the vibrational properties of rozenite were carried out to aid the interpretation of the Raman spectra. We found, in contrast to a recent Raman spectroscopic study, that there are no phase transitions between 21 and 290 K. We confirm the heavy atom structure reported in the literature (space group P21/n) to be correct and present, for the first time, an unconstrained determination of the H atom positions by means of high-resolution neutron powder diffraction, and report the complete crystal structure at 290 and 21 K. The anisotropy of the thermal expansion of the lattice vectors is αa:αb:αc = 1.00:2.19:1.60 at 285 K. Subsequent analysis of the thermal expansion tensor revealed highly anisotropic behavior as reflected in negative thermal expansion approximately ||〈101⟩ and ratios of the tensor eigenvalues of α1:α2:α3 = −1:3.74:5.40 at 285 K. Lastly, we demonstrated how combining Raman spectroscopy and X-ray difraction of the same sample sealed inside a capillary with complementary first-principles calculations yields accurate reference Raman spectra. This workflow enables the construction of a reliable Raman spectroscopic database for planetary exploration, which will be invaluable to shed light on the geological past as well as in identifying resources for the future colonization of planetary bodies throughout the solar system.
|
Jun 2023
|
|
|
Abstract: Seismic studies are essential for accurate characterisation of planetary interior structures, but are dependent on modelling for interpretation, requiring data on the elastic properties of likely constituent minerals. With the potential deployment of seismic stations on icy worlds such as Europa and Titan envisioned for the near future, a campaign of study into the elasticity of potential icy ocean world minerals is of paramount importance.
In the paper we assess the role of first-principles computer simulations to this problem, in particular focussing on the application of recent advances in simulating dispersion forces in loosely-bonded molecular solids, likely to be the main constituents of icy ocean worlds. This is of particular interest for these kinds of materials, since the complex sample handling, phase transitions and the difficulty of obtaining single crystals often greatly complicates the experimental determination of the full elastic tensor.
We focus on CO2, C6H6, MgSO4·7H2O and CaSO4·2H2O as they allow us to benchmark the performance over a wide range of chemical space, structural topologies, crystal symmetries and bonding types, and moreover have accurate experimentally determined unit-cell dimensions, bulk moduli and full elastic tensors for benchmarking purposes.
We demonstrate that the dispersion corrected approaches indeed perform superior in modelling the experimental density profiles (mean unsigned differences of merely 0.04 g/cm3 (CO2), 0.02 g/cm3 (C6H6), 0.003 g/cm3 (MgSO4·7H2O) and 0.013 g/cm3 (CaSO4·2H2O)) and may find application in exploring the compressive parameters of candidate materials, which could then be used in rheological models of icy ocean worlds.
Moreover, we have assessed if the elastic constants computed by dispersion corrected density functional theory are accurate enough to be used in a reference data base for the seismic exploration of icy ocean worlds. Despite one approach having demonstrated good accuracy compared with the experimental values in modelling the elasticity of CO2, we instead find average differences from expected P and S wave velocities of around 10 to 25% for the elastically more complex title compounds. In part these differences are due to the large temperature difference between the experimental elasticity data (typically near 300 K) and our calculations, which were performed in the athermal limit.
|
Jul 2021
|
|
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Diamond Proposal Number(s):
[4133]
Abstract: Pb contamination of soils is a global problem. This paper discusses the ability of an Fe-rich waste, water treatment residual (WTR), to adsorb Pb(II). This was investigated using batch sorption experiments, X-ray diffraction, electron microprobe microanalysis, PHREEQC modelling and Extended X-ray Absorption Fine Structure (EXAFS) analysis. The WTR is composed of approximately 23 wt. % natural organic matter (NOM), 70 wt. % ferrihydrite and <10 wt. % silicate material. Pb(II) sorption to WTR was dependent on initial Pb(II) load, particle size, time and pH, but not on ionic strength. EXAFS analysis at the Pb LIII-edge confirmed that Pb(II) sorbed to WTR by co-existing bidentate edge-sharing and monodentate or corner-sharing complexes, with 2 O at ∼2.31–2.34 Å, 1 Fe at ∼3.32–3.34 Å, 2 Fe at ∼3.97–3.99 Å and 1 Pb at ∼3.82–3.85 Å. Linear combination showed that the Pb(II)-sorbed spectra were best fit with a ∼0.9 ± 0.1 and 0.1 ± 0.1 contribution from Pb(II)-sorbed ferrihydrite and Pb(II)-sorbed humic acid end members, respectively. Overall, we show that Pb(II) sorbs via strong inner-sphere complexation of Pb(II) to the ferrihydrite component of the WTR, which itself is stable over a wide pH range. Therefore, we suggest that Fe-rich WTR wastes could be used as effective adsorbents in Pb(II)-contaminated soils to help ensure sustainable terrestrial ecosystems.
|
Jul 2020
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[15046]
Open Access
Abstract: Results are presented from the analysis of aqueous and solid-phase V speciation within samples collected from the Hazeltine Creek catchment affected by the August 2014 Mount Polley mine tailings dam failure, Canada. Electron microprobe and XANES analysis found that V is present as V3+ substituted into magnetite, and V3+ and V4+ substituted into titanite, both of which occur in the spilled Mount Polley tailings. Secondary Fe oxyhydroxides forming in inflow waters and on creek beds have V K-edge XANES spectra exhibiting E½ positions and pre-edge features consistent with the presence of V5+ species, suggesting sorption of this species on these secondary phases. PHREEQC modelling suggests that the stream waters mostly contain V5+, and the inflow and pore waters contain a mixture of V3+ and V5+. These data, and stream, inflow and pore water chemical data, suggest that dissolution of V(III)-bearing magnetite, V(III,IV)-bearing titanite, V(V)-bearing Fe(-Al-Si-Mn) oxhydroxides, V-bearing Al(OH)3 and/or -clay minerals may have occurred. In the circumneutral pH environment of Hazeltine Creek elevated V concentrations are likely naturally attenuated by formation of V(V)-bearing secondary Fe oxyhydroxide, Al(OH)3 or clay mineral colloids, suggesting that the V is not bioavailable. A conceptual model is presented describing the origin and fate of V in Hazeltine Creek that is applicable to other river systems.
|
Mar 2019
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[7737]
Abstract: The ability of a Fe-Mn binary oxide waste to adsorb arsenic (As) in a historically contaminated soil was investigated. Initial laboratory sorption experiments indicated that arsenite [As(III)] was oxidized to arsenate [As(V)] by the Mn oxide component, with concurrent As(V) sorption to the Fe oxide. The binary oxide waste had As(III) and As(V) adsorption capacities of 70 mg g−1 and 32 mg g−1 respectively. X-ray Absorption Near-Edge Structure and Extended X-ray Absorption Fine Structure at the As K-edge confirmed that all binary oxide waste surface complexes were As(V) sorbed by mononuclear bidentate corner-sharing, with 2 Fe at ∼3.27 Ǻ. The ability of the waste to perform this coupled oxidation-sorption reaction in real soils was investigated with a 10% by weight addition of the waste to an industrially As contaminated soil. Electron probe microanalysis showed As accumulation onto the Fe oxide component of the binary oxide waste, which had no As innately. The bioaccessibility of As was also significantly reduced by 7.80% (p < 0.01) with binary oxide waste addition. The results indicate that Fe-Mn binary oxide wastes could provide a potential in situ remediation strategy for As and Pb immobilization in contaminated soils.
|
Aug 2017
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[3312]
Open Access
Abstract: Purpose: Chromium, a potentially harmful element, occurs commonly within the urban sediment cascade as a result of abundant industrial and transport-related sources. The risks that Cr-bearing particles pose to ecosystems and humans depend on the solid-phase chemical speciation of Cr and its environmental mobility. In this study, we adopt an integrated geochemical approach to investigate and determine the long-term fate of Cr in the urban sediment cascade. Materials and methods: We use bulk chemical digests, sequential chemical extraction analysis, electron microscopy, electron microprobe and microfocus XANES analysis to describe the solid-phase speciation, geochemical characteristics and potential long-term behaviour of Cr in urban particulate matter from both aquatic sediment and road dust sediment (RDS) in Manchester, UK. Results and discussion: Cr-bearing grains within RDS and aquatic sediment are predominantly iron oxides and alumino-silicate glass grains. Electron microprobe analysis indicates Cr concentrations up to 3300 and 133,400 μg g−1 in the RDS and aquatic grains, respectively. XANES analysis indicates that Cr(III) is the dominant oxidation state, with only trace amounts of Cr(VI). Importantly, Cr speciation does not appear to have changed between sedimentary environments and the dominance of Cr(III) suggests limited bioavailability or toxicity under predominant environmental (anoxic and neutral pH) conditions in the aquatic sediment sink. Furthermore, geochemical analyses suggest the environmental mobility of Cr in the aquatic sediment sink is low (compared to other toxic metals) due to its association mainly with alumino-silicate glass grains and its inclusion as an integral part of the glass structure. Conclusions: Industrial glass grains are a major component of urban sediment worldwide. The speciation and geochemical investigations performed in this study suggest most Cr within the urban sediment cascade may be resistant to environmental processes that could mobilise other toxic metals.
|
Sep 2016
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[8462]
Open Access
Abstract: The effects of Sb on the precipitation of synthetic scorodite, and the resultant phases formed, were investigated. Nine synthetic precipitates with varying concentrations of Sb, together with As-only and Sb-only end members, were prepared using a scorodite synthesis method, and these were characterized using XRD, SEM, chemical digestion and μXRF mapping. XRD analysis shows that the end members are scorodite (FeAsO4.2H2O) and tripuhyite (FeSbO4), and that the intermediate members are not Sb-substituted scorodite, but instead are physical mixtures of scorodite and tripuhyite, with tripuhyite becoming more prominent with increasing amounts of Sb in the synthesis. Electron microprobe analysis on natural scorodites confirms that they contain negligible concentrations of Sb. With increasing Sb in the synthesis, the morphology of the scorodite changes from rosettes of intergrown crystals to anhedral masses of smaller crystallites. Chemical digestion of the series also became increasingly difficult with increasing Sb content. We conclude that Sb is not taken up in scorodite (perhaps due to its larger ionic radius and different co-ordination with O compared to As), that increasing amounts of Sb in the system affect scorodite morphology, and that tripuhyite is a highly stable and perhaps underestimated Sb-sink.
|
Jun 2015
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[1986, 7527]
Open Access
Abstract: Phosphorus (P) is one of the most important limiting nutrients for the growth of oceanic phytoplankton and terrestrial ecosystems, which in turn contributes to CO2 sequestration. The solid-phase speciation of P will influence its solubility and hence its availability to such ecosystems. This study reports on the results of X-ray diffraction, electron microprobe chemical analysis and X-ray mapping, chemical extractions and X-ray absorption near-edge spectroscopy analysis carried out to determine the solid-phase speciation of P in dusts and their source sediments from the Saharan Bodélé Depression, the worlds largest single source of dust. Chemical extraction data suggest that the Bodélé dusts contain 28 to 60% (mean 49%) P sorbed to, or co-precipitated with Fe (hydr)oxides, < 10% organic P, 21-50% (mean 32%) detrital apatite P, and 10-22% (mean 15%) authigenic-biogenic apatite P. This is confirmed by the other analyses, which also suggest that the authigenic-biogenic apatite P is likely fish bone and scale, and that this might form a larger proportion of the apatite pool (33+/-22%) than given by the extraction data. This is the first-ever report of fish material in aeolian dust, and it is significant because P derived from fish bone and scale is relatively soluble and is often used as a soil fertilizer. Therefore, the fish-P will likely be the most readily form of Bodélé P consumed during soil weathering and atmospheric processing, but given time and acid dissolution, the detrital apatite, Fe-P and organic-P will also be made available. The Bodélé dust input of P to global ecosystems will only have a limited life, however, because its major source materials, diatomite in the Bodélé Depression, undergo persistent deflation and have a finite thickness.
|
Sep 2014
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[8523]
Abstract: Peatlands can be important stores of arsenic but we are lacking spectroscopic evidence of the sequestration pathways of this toxic metalloid in peatland environments. This study reports on the solid-phase speciation of anthropogenically-derived arsenic in atmospherically contaminated peat from the Peak District National Park (UK). Surface and sub-surface peat samples were analysed by synchrotron X-ray absorption spectroscopy on B18 beamline at Diamond Light Source (UK). The results suggest that there are contrasting arsenic sequestration mech- anisms in the peat. The bulk arsenic speciation results, in combination with strong arsenic-iron correlations at the surface, suggest that iron (hydr)oxides are key phases for the immobilisation of arsenic at the peat surface. In contrast, the deeper peat samples are dominated by arsenic sulphides (arsenopyrite, realgar and orpiment). Given that these peats receive inputs solely from the atmosphere, the presence of these sulphide phases suggests an in- situ authigenic formation. Redox oscillations in the peat due to a fluctuating water table and an abundant store of legacy sulphur from historic acid rain inputs may favour the precipitation of arsenic sequestering sulphides in sub- surface horizons. Oxidation-induced loss of these arsenic sequestering sulphur species by water table drawdown has important implications for the mobility of arsenic and the quality of waters draining peatlands.
|
Feb 2014
|
|