I15-1-X-ray Pair Distribution Function (XPDF)
|
Celia
Castillo-Blas
,
Montaña J.
García
,
Ashleigh M.
Chester
,
Matjaž
Mazaj
,
Shaoliang
Guan
,
Georgina P.
Robertson
,
Ayano
Kono
,
James M. A.
Steele
,
Luis
León-Alcaide
,
Bruno
Poletto-Rodrigues
,
Philip A.
Chater
,
Silvia
Cabrera
,
Andraž
Krajnc
,
Lothar
Wondraczek
,
David A.
Keen
,
Jose
Alemán
,
Thomas
Bennett
Diamond Proposal Number(s):
[29957]
Open Access
Abstract: Metal–organic framework (MOF) composites are proposed as solutions to the mechanical instability of pure MOF materials. Here, we present a new compositional series of recently discovered MOF–crystalline inorganic glass composites. In this case, formed by the combination of a photocatalytic titanium MOF (MIL-125-NH2) and a phosphate-based glass (20%Na2O–10%Na2SO4–70%P2O5). This new family of composites has been synthesized and characterized using powder X-ray diffraction, thermal gravimetric analysis, differential scanning calorimetry, scanning electron microscopy, and X-ray total scattering. Through analysis of the pair distribution function extracted from X-ray total scattering data, the atom–atom interactions at the MOF–glass interface are described. Nitrogen and carbon dioxide isotherms demonstrate good surface area values despite the pelletization and mixing of the MOF with a dense inorganic glass. The catalytic activity of these materials was investigated in the photooxidation of amines to imines, showing the retention of the photocatalytic effectiveness of the parent pristine MOF.
|
Mar 2025
|
|
|
Emily V.
Shaw
,
Celia
Castillo Blas
,
Timothy
Lambden
,
Beatriz
De Santos
,
Bethan
Turner
,
Giulio I.
Lampronti
,
Joonatan E. M.
Laulainen
,
Georgina
Robertson
,
Ashleigh M.
Chester
,
Chumei
Ye
,
Shaoliang
Guan
,
Joshua
Karlsson
,
Valentina
Martinez
,
Ivana
Brekalo
,
Bahar
Karadeniz
,
Silvia
Cabrera
,
Lauren N.
Mchugh
,
Krunoslav
Užarević
,
Jose
Aleman
,
Alberto
Fraile
,
Rachel C
Evans
,
Paul
Midgley
,
David A.
Keen
,
Xavier
Moya
,
Thomas D.
Bennett
Open Access
Abstract: In this work, we investigated the response of the metal-organic framework MIL-125-NH2 to ball-milling. Both localised and bulk analyses revealed that prolongued ball-milling results in a complete loss of long-range structural order. Investigation of this disorder revealed partial retention of the local bonding of the secondary building unit, suggesting structure collapse progressed primarily through metal-linker bond breakage. We explored the photocatalytic performance of the materials, and examined the materials’ band gap using UV-Vis reflectance spectroscopy.
|
Feb 2025
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Bikash Kumar
Shaw
,
Lucia
Corti
,
Joshua M.
Tuffnell
,
Celia
Castillo-Blas
,
Patrick
Schlachta
,
Georgina P.
Robertson
,
Lauren
Mchugh
,
Adam F.
Sapnik
,
Sebastian A.
Hallweger
,
Philip A.
Chater
,
Gregor
Kieslich
,
David A.
Keen
,
Sian E.
Dutton
,
Frédéric
Blanc
,
Thomas D.
Bennett
Diamond Proposal Number(s):
[20038]
Open Access
Abstract: ABX3-type hybrid organic–inorganic structures have recently emerged as a new class of meltable materials. Here, by the use of phenylphosphonium derivatives as A cation, we study liquid- and glass-forming behavior of a new family of hybrid structures, (RPh3P)[Mn(dca)3] (R = Me, Et, Ph; dca = dicyanamide). These new compounds melt at 196–237 °C (Tm) and then vitrify upon cooling to room temperature, forming glasses. In situ glass formation of this new family of materials was probed on a large scale using a variable-temperature PXRD experiment. Structure analyses of the crystalline and the glasses were carried out by solid-state nuclear magnetic resonance spectroscopy and synchrotron X-ray total scattering techniques for using the pair distribution function. The mechanical properties of the glasses produced were evaluated showing promising durability. Thermal and electrical conductivities showed low thermal conductivities (κ ∼ 0.07–0.09 W m–1 K–1) and moderate electrical conductivities (σ ∼ 10–4–10–6 S m–1) at room temperature, suggesting that by the precise control of the A cation, we can tune meltable hybrid structures from moderate conductors to efficient thermal insulators. Our results raise attention on the practical use of this new hybrid material in applications including, e.g., photovoltaic devices to prevent light-deposited heat (owing to low κRT), energy harvesting thermoelectric, etc., and advance the structure–property understanding.
|
Dec 2024
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Vahid
Nozari
,
Ayda Nemati Vesali
Azar
,
Roman
Sajzew
,
Celia
Castillo-Blas
,
Ayano
Kono
,
Martin
Oschatz
,
David A.
Keen
,
Philip A.
Chater
,
Georgina P.
Robertson
,
James M. A.
Steele
,
Luis
León-Alcaide
,
Alexander
Knebel
,
Christopher W.
Ashling
,
Thomas D.
Bennett
,
Lothar
Wondraczek
Diamond Proposal Number(s):
[29957]
Open Access
Abstract: Metal-organic framework (MOF) composite materials containing ionic liquids (ILs) have been proposed for a range of potential applications, including gas separation, ion conduction, and hybrid glass formation. Here, an order transition in an IL@MOF composite is discovered using CuBTC (copper benzene-1,3,5-tricarboxylate) and [EMIM][TFSI] (1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide). This transition – absent for the bare MOF or IL – provides an extended super-cooling range and latent heat at a capacity similar to that of soft paraffins, in the temperature range of ≈220 °C. Structural analysis and in situ monitoring indicate an electrostatic interaction between the IL molecules and the Cu paddle-wheels, leading to a decrease in pore symmetry at low temperature. These interactions are reversibly released above the transition temperature, which reflects in a volume expansion of the MOF-IL composite.
|
Jul 2024
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Ashleigh M.
Chester
,
Celia
Castillo-Blas
,
Roman
Sajzew
,
Bruno P.
Rodrigues
,
Giulio I.
Lampronti
,
Adam F.
Sapnik
,
Georgina P.
Robertson
,
Matjaž
Mazaj
,
Daniel J. M.
Irving
,
Lothar
Wondraczek
,
David A.
Keen
,
Thomas D.
Bennett
Open Access
Abstract: Here we describe the synthesis of a compositional series of metal–organic framework crystalline-inorganic glass composites (MOF-CIGCs) containing ZIF-8 and an inorganic phosphate glass, 20Na2O–10NaCl–70P2O5, to expand the library of host matrices for metal–organic frameworks. By careful selection of the inorganic glass component, a relatively high loading of ZIF-8 (70 wt%) was achieved, which is the active component of the composite. A Zn⋯O–P interfacial bond, previously identified in similar composites/hybrid blends, was suggested by analysis of the total scattering pair distribution function data. Additionally, CO2 and N2 sorption and variable-temperature PXRD experiments were performed to assess the composites’ properties.
|
Jun 2024
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Chumei
Ye
,
Giulio
Lampronti
,
Lauren N.
Mchugh
,
Celia
Castillo-Blas
,
Ayano
Kono
,
Celia
Chen
,
Georgina P.
Robertson
,
Liam A. V.
Nagle-Cocco
,
Weidong
Xu
,
Samuel D.
Stranks
,
Valentina
Martinez
,
Ivana
Brekalo
,
Bahar
Karadeniz
,
Krunoslav
Užarević
,
Wenlong
Xue
,
Pascal
Kolodzeiski
,
Chinmoy
Das
,
Philip
Chater
,
David A.
Keen
,
Sian E.
Dutton
,
Thomas D.
Bennett
Diamond Proposal Number(s):
[20038]
Open Access
Abstract: Hybrid organic–inorganic perovskites (HOIPs) occupy a prominent position in the field of materials chemistry due to their attractive optoelectronic properties. While extensive work has been done on the crystalline materials over the past decades, the newly reported glasses formed from HOIPs open up a new avenue for perovskite research with their unique structures and functionalities. Melt-quenching is the predominant route to glass formation; however, the absence of a stable liquid state prior to thermal decomposition precludes this method for most HOIPs. In this work, we describe the first mechanochemically-induced crystal-glass transformation of HOIPs as a rapid, green and efficient approach for producing glasses. The amorphous phase was formed from the crystalline phase within 10 minutes of ball-milling, and exhibited glass transition behaviour as evidenced by thermal analysis techniques. Time-resolved in situ ball-milling with synchrotron powder diffraction was employed to study the microstructural evolution of amorphisation, which showed that the crystallite size reaches a comminution limit before the amorphisation process is complete, indicating that energy may be further accumulated as crystal defects. Total scattering experiments revealed the limited short-range order of amorphous HOIPs, and their optical properties were studied by ultraviolet-visible (UV-vis) spectroscopy and photoluminescence (PL) spectroscopy.
|
Apr 2024
|
|
I20-EDE-Energy Dispersive EXAFS (EDE)
|
Diamond Proposal Number(s):
[28536]
Open Access
Abstract: Amorphous metal–organic frameworks are rarely formed via direct synthesis. Our limited understanding of their atomic assembly in solution prevents full exploitation of their unique structural complexity. Here, we use in situ synchrotron X-ray absorption spectroscopy with sub-second time resolution to probe the formation of the amorphous Fe-BTC framework. Using a combination of spectral fingerprinting, linear combination analysis, and principal component analysis coupled with kinetic analyses, we reveal a multi-stage formation mechanism that, crucially, proceeds via the generation of a transient intermediate species.
|
Feb 2024
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Celia
Castillo-Blas
,
Ashleigh M.
Chester
,
Ronan P.
Cosquer
,
Adam F.
Sapnik
,
Lucia
Corti
,
Roman
Sajzew
,
Bruno
Poletto-Rodrigues
,
Georgina P.
Robertson
,
Daniel J. M.
Irving
,
Lauren N.
Mchugh
,
Lothar
Wondraczek
,
Frédéric
Blanc
,
David A.
Keen
,
Thomas D.
Bennett
Diamond Proposal Number(s):
[29957]
Open Access
Abstract: The interface within a composite is critically important for the chemical and physical properties of these materials. However, experimental structural studies of the interfacial regions within metal–organic framework (MOF) composites are extremely challenging. Here, we provide the first example of a new MOF composite family, i.e., using an inorganic glass matrix host in place of the commonly used organic polymers. Crucially, we also decipher atom–atom interactions at the interface. In particular, we dispersed a zeolitic imidazolate framework (ZIF-8) within a phosphate glass matrix and identified interactions at the interface using several different analysis methods of pair distribution function and multinuclear multidimensional magic angle spinning nuclear magnetic resonance spectroscopy. These demonstrated glass–ZIF atom–atom correlations. Additionally, carbon dioxide uptake and stability tests were also performed to check the increment of the surface area and the stability and durability of the material in different media. This opens up possibilities for creating new composites that include the intrinsic chemical properties of the constituent MOFs and inorganic glasses.
|
Oct 2023
|
|
I11-High Resolution Powder Diffraction
|
Ashleigh M.
Chester
,
Celia
Castillo-Blas
,
Roman
Sajzew
,
Bruno
Poletto Rodrigues
,
Ruben
Mas Balleste
,
Alicia
Moya
,
Jessica E.
Snelson
,
Sean M.
Collins
,
Adam F.
Sapnik
,
Georgina P.
Robertson
,
Daniel J. M.
Irving
,
Lothar
Wondraczek
,
David A.
Keen
,
Thomas D.
Bennett
Diamond Proposal Number(s):
[20038]
Open Access
Abstract: Recently, increased attention has been focused on amorphous metal-organic frameworks (MOFs) and, more specifically, MOF glasses, the first new glass category discovered since the 1970s. In this work, we explore the fabrication of a compositional series of hybrid blends, the first example of blending a MOF and inorganic glass. We combine ZIF-62(Zn) glass and an inorganic glass, 30Na2O-70P2O5, in an effort to combine the chemical versatility of the MOF glass with the mechanical properties of the inorganic glass. We investigate the interfacial interactions between the two components using pair distribution function analysis and solid state NMR spectroscopy, and suggest potential interactions between the two phases. Thermal analysis of the blend samples indicated that they were less thermally stable than the starting materials, and had a Tg shifted relative to the pristine materials. Annular dark field scanning transmission electron microscopy tomography, X-ray energy dispersive spectroscopy (EDS), nanoindentation and 31P NMR all indicated close mixing of the two phases, suggesting that immiscible blends had formed.
|
Sep 2023
|
|
I15-Extreme Conditions
|
Diamond Proposal Number(s):
[31314]
Open Access
Abstract: Recent research on metal–organic frameworks (MOFs) has shown a shift from considering only the crystalline high-porosity phases to exploring their amorphous counterparts. Applying pressure to a crystalline MOF is a common method of amorphization, as MOFs contain large void spaces that can collapse, reducing the accessible surface area. This can be either a desired change or indeed an unwanted side effect of the application of pressure. In either case, understanding the MOF’s pressure response is extremely important. Three such MOFs with varying pore sizes (UiO-66, MOF-808, and NU-1000) were investigated using in situ high-pressure X-ray diffraction and Raman spectroscopy. Partial crystallinity was observed in all three MOFs above 10 GPa, along with some recovery of crystallinity on return to ambient conditions if the frameworks were not compressed above thresholds of 13.3, 14.2, and 12.3 GPa for UiO-66, MOF-808, and NU-1000, respectively. This threshold was marked by an unexpected increase in one or more lattice parameters with pressure in all MOFs. Comparison of compressibility between MOFs suggests penetration of the pressure-transmitting oil into MOF-808 and NU-1000. The survival of some crystallinity above 10 GPa in all of these MOFs despite their differing pore sizes and extents of oil penetration demonstrates the importance of high-pressure characterization of known structures.
|
Jun 2023
|
|