I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Open Access
Abstract: In this study, we carried out a detailed investigation of the photoluminescence of Mn4+ in Ga2O3–Al2O3 solid solutions as a function of the chemical composition, temperature, and hydrostatic pressure. For this purpose, a series of (Al1–xGax)2O3:Mn4+,Mg phosphors (x = 0, ..., 0.1.0) were synthesized and characterized for the first time. A detailed crystal structure analysis of the obtained materials was done by the powder X-ray diffraction technique. The results of the crystal structure and luminescence studies evidence the transformation of the ambient-pressure-synthesized material from the rhombohedral (α-type) to monoclinic (β-type) phase as the Ga content exceeds 15%. Spectroscopic features of the Mn4+ deep-red emission, including the temperature-dependent emission efficiency and decay time, as well as the possibility of their tuning through chemical pressure in each of these two phases were examined. Additionally, it has been shown that the application of hydrostatic pressure of ≥19 GPa allows one to obtain a corundum-like α-Ga2O3:Mn4+ phase. The luminescence properties of this material were compared with β-Ga2O3:Mn4+, which is normally synthesized at ambient pressure. Finally, we evaluated the possibility of application of the studied phosphor materials for low-temperature luminescence thermometry.
|
Oct 2022
|
|
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Diamond Proposal Number(s):
[9970]
Open Access
Abstract: The local structural changes associated with the ZIF-8 framework flexibility upon nitrogen gas adsorption have been studied by in situ X-ray absorption spectroscopy (XAS) and high-energy-resolution fluorescence-detected X-ray absorption near-edge structure (HERFD-XANES) spectroscopy. Different thermodynamic conditions (isobar and isotherm) have been used to explore the so-called “gate opening” transition in which the hexagonal pore windows of the sodalite cage open, increasing the accessible volume for gas adsorption. To elucidate the source of the spectral changes in the XANES region of the absorption spectra observed along the gas adsorption and through the transition from the closed to the open pore configuration, ab initio calculations have been performed. Our results demonstrate that the transition from the closed to the open pore configurations involves not only the rotation of the MeIM ligand but also a further bend of the Me group away from the plane defined by the IM ring. Additionally, the contribution of the N2 molecules adsorbed in the center of the 4-ring window has been included in the scattering model to fully reproduce the main features of the X-ray absorption spectra in the open pore configuration.
|
Mar 2022
|
|
I20-EDE-Energy Dispersive EXAFS (EDE)
|
Abstract: Cu-BTC metal-organic framework (MOF) has been found to be a promising candidate for removing hazardous substances from air via adsorption1. To understand the role that the copper sites in Cu-BTC play in the adsorption process, we have performed a detailed X-ray absorption spectroscopy (XAS) study. Conventional XAS and high energy resolution fluorescence detection XAS (HERFD-XAS) were collected on degassed Cu-BTC, and after being exposed to CO2, water and benzene. The EXAFS analysis reveals that, although the local environment around the copper centers in all samples is similar, differences can be found in the first and second coordination shells. We have found that the Cu-O distance in the first coordination shell is slightly larger when the sample is immersed in water and benzene than in the degassed sample, while it does not change for the sample exposed to CO2. Small differences are also observed in the Cu-Cu distance, gradually increasing from 2.49 Å in the degassed sample, to 2.52 Å, 2.58 Å and 2.63 Å upon adsorption of CO2, benzene and water, respectively. HERFD-XAS has been used to obtain information about the electronic and geometric structure around the copper metal centers, as the use of high energy resolution enhances the features in the XANES spectrum enabling the detection of subtle changes2. We have observed differences in the intensity and the energy position of some of the XANES spectral features upon adsorption of different adsorbates that can be attributed to changes in the local environment around the copper centers, as detected in the EXAFS analysis.
In this study we show that XAS is a powerful and very sensitive tool for studying host-guest interactions in MOFs, providing atomic-level insights into adsorption mechanisms.
|
Jul 2021
|
|
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Open Access
Abstract: A scanning multi-crystal x-ray emission spectrometer to perform photon-in/photon-out spectroscopy at the I20-Scanning beamline at Diamond Light Source is described. The instrument, equipped with three analyzer crystals, is based on a 1m Rowland circle spectrometer operating in the vertical plane. The energy resolution of the spectrometer is of the order of 1 eV, having sufficient resolving power to overcome the core-hole lifetime broadening of most of the transition metals K-edges. Examples showing the capabilily of the beamline for performing high energy resolution fluorescence detection x-ray absorption spectroscopy (HERFD-XAS), non-resonant x-ray emission spectroscopy (XES) and resonant x-ray emission spectroscopy (RXES) are presented. The comparison of the Zn and Mn K-edge HERFD-XANES of ZnO and MnO with ab-initio calculations shows that the technique provides enhanced validation of the models by making subtle spectral features more visible.
|
May 2021
|
|
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Diamond Proposal Number(s):
[16479]
Open Access
Abstract: In situ X-ray absorption and emission spectroscopies (XAS and XES) are used to provide details regarding the role of the accessibility and extent of redox activity of the Mn ions in determining the oxygen reduction activity of LaMnO3 and CaMnO3, with X-ray absorption near-edge structure (XANES) providing the average oxidation state, extended X-ray absorption fine structure (EXAFS) providing the local coordination environment, and XES providing the population ratios of the Mn2+, Mn3+, and Mn4+ sites as a function of the applied potential. For LaMnO3, XANES and XES show that Mn3+ is formed, but Mn4+ ions are retained, which leads to the 4e– reduction between 0.85 and 0.6 V. At more negative potentials, down to 0.2 V, EXAFS confirms an increase in oxygen vacancies as evidenced by changes in the Mn–O coordination distance and number, while XES shows that the Mn3+ to Mn4+ ratio increases. For CaMnO3, XANES and XES show the formation of both Mn3+ and Mn2+ as the potential is made more negative, with little retention of Mn4+ at 0.2 V. The EXAFS for CaMnO3 also indicates the formation of oxygen vacancies, but in contrast to LaMnO3, this is accompanied by loss of the perovskite structure leading to structural collapse. The results presented have implications in terms of understanding of both the pseudocapacitive response of Mn oxide electrocatalysts and the processes behind degradation of the activity of the materials.
|
May 2021
|
|
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Diamond Proposal Number(s):
[20589, 23523]
Abstract: The design and performance of an electrochemical cell and solution flow system optimized for the collection of X-ray absorption spectra from solutions of species sensitive to photodamage is described. A combination of 3D CAD and 3D printing techniques facilitates highly optimized design with low unit cost and short production time. Precise control of the solution flow is critical to both minimizing the volume of solution needed and minimizing the photodamage that occurs during data acquisition. The details of an integrated four-syringe stepper-motor-driven pump and associated software are described. It is shown that combined electrochemical and flow control can allow repeated measurement of a defined volume of solution, 100 µl, of samples sensitive to photoreduction without significant change to the X-ray absorption near-edge structure and is demonstrated by measurements of copper(II) complexes. The flow in situ electrochemical cell allows the collection of high-quality X-ray spectral measurements both in the near-edge region and over an extended energy region as is needed for structural analysis from solution samples. This approach provides control over photodamage at a level at least comparable with that achieved using cryogenic techniques and at the same time eliminates problems associated with interference due to Bragg peaks.
|
Mar 2021
|
|
I10-Beamline for Advanced Dichroism
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Myron S.
Huzan
,
Manuel
Fix
,
Matteo
Aramini
,
Peter
Bencok
,
J. Frederick W.
Mosselmans
,
Shusaku
Hayama
,
Franziska A.
Breitner
,
Leland B.
Gee
,
Charles J.
Titus
,
Marie-Anne
Arrio
,
Anton
Jesche
,
Michael L.
Baker
Diamond Proposal Number(s):
[21117, 23982]
Open Access
Abstract: Large single-ion magnetic anisotropy is observed in lithium nitride doped with iron. The iron sites are two-coordinate, putting iron doped lithium nitride amongst a growing number of two coordinate transition metal single-ion magnets (SIMs). Uniquely, the relaxation times to magnetisation reversal are over two orders of magnitude longer in iron doped lithium nitride than other 3d-metal SIMs, and comparable with high-performance lanthanide-based SIMs. To understand the origin of these enhanced magnetic properties a detailed characterisation of electronic structure is presented. Access to dopant electronic structure calls for atomic specific techniques, hence a combination of detailed single-crystal X-ray absorption and emission spectroscopies are applied. Together K-edge, L2,3-edge and Kβ X-ray spectroscopies probe local geometry and electronic structure, identifying iron doped lithium nitride to be a prototype, solid-state SIM, clean of stoichiometric vacancies where Fe lattice sites are geometrically equivalent. Extended X-ray absorption fine structure and angular dependent single-crystal X-ray absorption near edge spectroscopy measurements determine FeI dopant ions to be linearly coordinated, occupying a D6h symmetry pocket. The dopant engages in strong 3dπ-bonding, resulting in an exceptionally short Fe–N bond length (1.873(7) Å) and rigorous linearity. It is proposed that this structure protects dopant sites from Renner–Teller vibronic coupling and pseudo Jahn–Teller distortions, enhancing magnetic properties with respect to molecular-based linear complexes. The Fe ligand field is quantified by L2,3-edge XAS from which the energy reduction of 3dz2 due to strong 4s mixing is deduced. Quantification of magnetic anisotropy barriers in low concentration dopant sites is inhibited by many established methods, including far-infrared and neutron scattering. We deduce variable temperature L3-edge XAS can be applied to quantify the J = 7/2 magnetic anisotropy barrier, 34.80 meV (∼280 cm−1), that corresponds with Orbach relaxation via the first excited, MJ = ±5/2 doublet. The results demonstrate that dopant sites within solid-state host lattices could offer a viable alternative to rare-earth bulk magnets and high-performance SIMs, where the host matrix can be tailored to impose high symmetry and control lattice induced relaxation effects.
|
Oct 2020
|
|
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Diamond Proposal Number(s):
[23538]
Abstract: Phase-pure magnesium ferrite (MgFe2O4) spinel nanocrystals are synthesized by a fast microwave-assisted route. The elemental composition is optimized via the ratio of the precursor mixture and controlled by energy-dispersive X-ray spectroscopy. Fine-tuning of the magnetic properties without changing the overall elemental composition is demonstrated by superconducting quantum interference device (SQUID) magnetometry and Mössbauer spectroscopy. Together with X-ray absorption spectroscopy and X-ray emission spectroscopy, we confirm that the degree of cation inversion is altered by thermal annealing. We can correlate the magnetic properties with both the nanosize influence and the degree of inversion. The resulting nonlinear course of saturation magnetization (Ms) in correlation with the particle diameter allows to decouple crystallite size and saturation magnetization, by this providing a parameter for the production of very small nanoparticles with high Ms with great potential for magnetic applications like ferrofluids or targeted drug delivery. Our results also suggest that the optical band gap of MgFe2O4 is considerably larger than the fundamental electronic band gap because of the d5 electronic configuration of the iron centers. The presented different electronic transitions contributing to the absorption of visible light are the explanation for the large dissent among the band gaps and band potentials found in the literature.
|
Oct 2020
|
|
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Diamond Proposal Number(s):
[19013]
Open Access
Abstract: Surfactant-mediated chemical routes allow one to synthesize highly engineered shape- and size-controlled nanocrystals. However, the occurrence of capping agents on the surface of the nanocrystals is undesirable for selected applications. Here, a novel approach to the production of shape-controlled nanocrystals which exhibit high thermal stability is demonstrated. Ceria nanocubes obtained by surfactant-mediated synthesis are embedded inside a highly porous silica aerogel and thermally treated to remove the capping agent. Powder X-ray Diffraction and Scanning Transmission Electron Microscopy show the homogeneous dispersion of the nanocubes within the aerogel matrix. Remarkably, both the size and the shape of the ceria nanocubes are retained not only throughout the aerogel syntheses but also upon thermal treatments up to 900 °C, while avoiding their agglomeration. The reactivity of ceria is measured by in situ High-Energy Resolution Fluorescence Detected - X-ray Absorption Near Edge Spectroscopy at the Ce L3 edge, and shows the reversibility of redox cycles of ceria nanocubes when they are embedded in the aerogel. This demonstrates that the enhanced reactivity due to their prominent {100} crystal facets is preserved. In contrast, unsupported ceria nanocubes begin to agglomerate as soon as the capping agent decomposes, leading to a degradation of their reactivity already at 275 °C.
|
Sep 2020
|
|
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Diamond Proposal Number(s):
[9157]
Open Access
Abstract: To advance the scientific understanding of bacteria-driven mercury (Hg) transformation processes in natural environments, thermodynamics and kinetics of divalent mercury Hg(II) chemical speciation need to be understood. Based on Hg LIII-edge extended X-ray absorption fine structure (EXAFS) spectroscopic information, combined with competitive ligand exchange (CLE) experiments, we determined Hg(II) structures and thermodynamic constants for Hg(II) complexes formed with thiol functional groups in bacterial cell-membranes of two extensively studied Hg(II) methylating bacteria: Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132. The Hg EXAFS data suggest 5% of the total number of membrane thiol functionalities (Mem-RStot = 380 ± 50 µmol g−1 C) are situated closely enough to be involved in a 2-coordinated Hg(Mem-RS)2 structure in Geobacter. The remaining 95% of Mem-RSH are involved in mixed-ligation Hg(II)-complexes, either with low molecular mass (LMM) thiols like Cys, Hg(Cys)(Mem-RS) or with neighboring O/N membrane functionalities, Hg(Mem-RSRO). We report log K values for the formation of the structures Hg(Mem-RS)2, Hg(Cys)(Mem-RS), and Hg(Mem-RSRO) to be 39.1 ± 0.2 , 38.1 ± 0.1 and 25.6 ± 0.1, respectively, for Geobacter; and 39.2 ± 0.2 , 38.2 ± 0.1 and 25.7 ± 0.1, respectively for ND132. Combined with results obtained from previous studies using the same methodology to determine chemical speciation of Hg(II) in presence of natural organic matter (Suwannee River DOM) and 15 LMM thiols, an internally consistent thermodynamic data set is created, which we recommend to be used in studies of Hg transformation processes in Bacterium–NOM–LMM thiols systems.
|
Jun 2020
|
|