I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[8425]
Open Access
Abstract: The cellulosome is a remarkably intricate multienzyme nanomachine produced by anaerobic bacteria to degrade plant cell wall polysaccharides. Cellulosome assembly is mediated through binding of enzyme-borne dockerin modules to cohesin modules of the primary scaffoldin subunit. The anaerobic bacterium Acetivibrio cellulolyticus produces a highly intricate cellulosome comprising an adaptor scaffoldin, ScaB, whose cohesins interact with the dockerin of the primary scaffoldin (ScaA) that integrates the cellulosomal enzymes. The ScaB dockerin selectively binds to cohesin modules in ScaC that anchors the cellulosome onto the cell surface. Correct cellulosome assembly requires distinct specificities displayed by structurally related type I cohesin-dockerin pairs that mediate ScaC-ScaB and ScaA-enzyme assemblies. To explore the mechanism by which these two critical protein interactions display their required specificities, we determined the crystal structure of the dockerin of a cellulosomal enzyme in complex with a ScaA cohesin. The data revealed that the enzyme-borne dockerin binds to the ScaA cohesin in two orientations, indicating two identical cohesin-binding sites. Combined mutagenesis experiments served to identify amino acid residues that modulate type I cohesin-dockerin specificity in A. cellulolyticus. Rational design was used to test the hypothesis that the ligand-binding surfaces of ScaA- and ScaB-associated dockerins mediate cohesin recognition, independent of the structural scaffold. Novel specificities could thus be engineered into one, but not both of the ligand-binding sites of ScaB, while attempts at manipulating the specificity of the enzyme-associated dockerin were unsuccessful. These data indicate that dockerin specificity requires critical interplay between the ligand-binding surface and the structural scaffold of these modules.
|
Jan 2018
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[8425]
Open Access
Abstract: Cellulosomes are sophisticated multi-enzymatic nanomachines produced by anaerobes to effectively deconstruct plant structural carbohydrates. Cellulosome assembly involves the binding of enzyme-borne dockerins (Doc) to repeated cohesin (Coh) modules located in a non-catalytic scaffoldin. Docs appended to cellulosomal enzymes generally present two similar Coh-binding interfaces supporting a dual-binding mode, which may confer increased positional adjustment of the different complex components. Ruminococcus flavefaciens’ cellulosome is assembled from a repertoire of 223 Doc-containing proteins classified into 6 groups. Recent studies revealed that Docs of groups 3 and 6 are recruited to the cellulosome via a single-binding mode mechanism with an adaptor scaffoldin. To investigate the extent to which the single-binding mode contributes to the assembly of R. flavefaciens cellulosome, the structures of two group 1 Docs bound to Cohs of primary (ScaA) and adaptor (ScaB) scaffoldins were solved. The data revealed that group 1 Docs display a conserved mechanism of Coh recognition involving a single-binding mode. Therefore, in contrast to all cellulosomes described to date, the assembly of R. flavefaciens cellulosome involves single but not dual-binding mode Docs. Thus, this work reveals a novel mechanism of cellulosome assembly and challenges the ubiquitous implication of the dual-binding mode in the acquisition of cellulosome flexibility.
|
Apr 2017
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[8425]
Open Access
Abstract: The assembly of one of Nature most elaborate multi-enzyme complexes, the cellulosome, results from the binding of enzyme-borne dockerins to reiterated cohesin domains located in a non-catalytic primary scaffoldin. Generally, dockerins present two similar cohesin binding interfaces that support a dual binding mode. The dynamic integration of enzymes in cellulosomes, afforded by the dual binding mode, is believed to incorporate additional flexibility in highly populated multi-enzyme complexes. Ruminococcus flavefaciens, the primary degrader of plant structural carbohydrates in the rumen of mammals, uses a portfolio of more than 220 different enzymes to assemble the most intricate cellulosome known to date. A sequence-based analysis organized R. flavefaciens dockerins into six groups. Strikingly, a subset of R. flavefaciens cellulosomal enzymes, comprising dockerins of groups 3 and 6, were shown to be indirectly incorporated into primary scaffoldins, via an adaptor scaffoldin termed ScaC. Here we report the crystal structure of a group 3 R. flavefaciens dockerin, Doc3, in complex with ScaC cohesin. Doc3 is unusual as it presents a large cohesin-interacting surface that lacks the structural symmetry required to support a dual binding mode. In addition, dockerins of groups 3 and 6, which bind exclusively to ScaC cohesin, display a conserved mechanism of protein recognition that is similar to Doc3. Group 3 and 6 dockerins are predominantly appended to hemicellulose degrading enzymes. Thus, single binding mode dockerins interacting with adaptor scaffoldins exemplify an evolutionary pathway developed by R. flavefaciens to recruit hemicellulases to the sophisticated cellulosomes acting on the gastro intestinal tract of mammals.
|
Nov 2016
|
|
I02-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
Data acquisition
Detectors
Diagnostics
Health Physics
|
Immacolata
Venditto
,
Ana S.
Luis
,
Maja
Rydahl
,
Julia
Schückel
,
Vânia O.
Fernandes
,
Silvia
Vidal-Melgosa
,
Pedro
Bule
,
Arun
Goyal
,
Virginia M. R.
Pires
,
Catarina G.
Dourado
,
Luís M. A.
Ferreira
,
Pedro M.
Coutinho
,
Bernard
Henrissat
,
J. Paul
Knox
,
Arnaud
Baslé
,
Shabir
Najmudin
,
Harry J.
Gilbert
,
William G. T.
Willats
,
Carlos M. G. A.
Fontes
Diamond Proposal Number(s):
[9948]
Abstract: The breakdown of plant cell wall (PCW) glycans is an important biological and industrial process. Noncatalytic carbohydrate binding modules (CBMs) fulfill a critical targeting function in PCW depolymerization. Defining the portfolio of CBMs, the CBMome, of a PCW degrading system is central to understanding the mechanisms by which microbes depolymerize their target substrates. Ruminococcus flavefaciens, a major PCW degrading bacterium, assembles its catalytic apparatus into a large multienzyme complex, the cellulosome. Significantly, bioinformatic analyses of the R. flavefaciens cellulosome failed to identify a CBM predicted to bind to crystalline cellulose, a key feature of the CBMome of other PCW degrading systems. Here, high throughput screening of 177 protein modules of unknown function was used to determine the complete CBMome of R. flavefaciens. The data identified six previously unidentified CBMfamilies that targeted beta-glucans, beta-mannans, and the pectic polysaccharide homogalacturonan. The crystal structures of four CBMs, in conjunction with site-directed mutagenesis, provide insight into the mechanism of ligand recognition. In the CBMs that recognize beta-glucans and beta-mannans, differences in the conformation of conserved aromatic residues had a significant impact on the topology of the ligand binding cleft and thus ligand specificity. A cluster of basic residues in CBM77 confers calcium-independent recognition of homogalacturonan, indicating that the carboxylates of galacturonic acid are key specificity determinants. This report shows that the extended repertoire of proteins in the cellulosome of R. flavefaciens contributes to an extended CBMome that supports efficient PCW degradation in the absence of CBMs that specifically target crystalline cellulose.
|
Jun 2016
|
|
I03-Macromolecular Crystallography
|
Abstract: A number of anaerobic microorganisms produce multi-modular, multi-enzyme complexes termed cellulosomes. These extracellular macromolecular nanomachines are designed for the efficient degradation of plant cell-wall carbohydrates to smaller sugars that are subsequently used as a source of carbon and energy. Cellulolytic strains from the rumens of mammals, such as Ruminococcus flavefaciens, have been shown to have one of the most complex cellulosomal systems known. Cellulosome assembly requires the binding of dockerin modules located in cellulosomal enzymes to cohesin modules located in a macromolecular scaffolding protein. Over 220 genes encoding dockerin-containing proteins have been identified in the R. flavefaciens genome. The dockerin-containing enzymes can be incorporated into the primary scaffoldin (ScaA), which in turn can bind to adaptor scaffoldins (ScaB or ScaC) and subsequently to anchoring scaffoldin (ScaE), thereby attaching the whole complex to the cell surface. However, unlike other cellulosomes such as that from Clostridium thermocellum, the Ruminococcus species lack a specific carbohydrate-binding module (CBM) on ScaA which recruits the entire complex onto the surface of the substrate. Instead, a cellulose-binding protein, CttA, comprising two putative tandem novel carbohydrate-binding modules and a C-terminal X-dockerin module, which can bind to the cohesin of ScaE, may mediate the attachment of bacterial cells to cellulose. Here, the expression, purification and crystallization of the carbohydrate-binding modular part of the CttA from R. flavefaciens are described. X-ray data have been collected to resolutions of 3.23 and to 1.61 Å in space groups P3121 or P3221 and P21, respectively. The structure was phased using bound iodide from the crystallization buffer by SAD experiments.
|
Jun 2015
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Open Access
Abstract: Protein-protein interactions play a pivotal role in the assembly of the cellulosome, one of nature's most intricate nanomachines dedicated to the depolymerization of complex carbohydrates. The integration of cellulosomal components usually occurs through the binding of type I dockerin modules located at the C terminus of the enzymes to cohesin modules located in the primary scaffoldin subunit. Cellulosomes are typically recruited to the cell surface via type II cohesin-dockerin interactions established between primary and cell-surface anchoring scaffoldin subunits. In contrast with type II interactions, type I dockerins usually display a dual binding mode that may allow increased conformational flexibility during cellulosome assembly. Acetivibrio cellulolyticus produces a highly complex cellulosome comprising an unusual adaptor scaffoldin, ScaB, which mediates the interaction between the primary scaffoldin, ScaA, through type II cohesin-dockerin interactions and the anchoring scaffoldin, ScaC, via type I cohesin-dockerin interactions. Here, we report the crystal structure of the type I ScaB dockerin in complex with a type I ScaC cohesin in two distinct orientations. The data show that the ScaB dockerin displays structural symmetry, reflected by the presence of two essentially identical binding surfaces. The complex interface is more extensive than those observed in other type I complexes, which results in an ultra-high affinity interaction (Ka ∼1012 m). A subset of ScaB dockerin residues was also identified as modulating the specificity of type I cohesin-dockerin interactions in A. cellulolyticus. This report reveals that recruitment of cellulosomes onto the cell surface may involve dockerins presenting a dual binding mode to incorporate additional flexibility into the quaternary structure of highly populated multienzyme complexes.
|
Apr 2015
|
|
I02-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[8425]
Open Access
Abstract: Structural carbohydrates comprise an extraordinary source of energy that remains poorly utilized by the biofuel sector as enzymes have restricted access to their substrates within the intricacy of plant cell walls. Carbohydrate active enzymes (CAZYmes) that target recalcitrant polysaccharides are modular enzymes containing noncatalytic carbohydrate-binding modules (CBMs) that direct enzymes to their cognate substrate, thus potentiating catalysis. In general, CBMs are functionally and structurally autonomous from their associated catalytic domains from which they are separated through flexible linker sequences. Here, we show that a C-terminal CBM46 derived from BhCel5B, a Bacillus halodurans endoglucanase, does not interact with ?-glucans independently but, uniquely, acts cooperatively with the catalytic domain of the enzyme in substrate recognition. The structure of BhCBM46 revealed a ?-sandwich fold that abuts onto the region of the substrate binding cleft upstream of the active site. BhCBM46 as a discrete entity is unable to bind to ?-glucans. Removal of BhCBM46 from BhCel5B, however, abrogates binding to ?-1,3–1,4-glucans while substantially decreasing the affinity for decorated ?-1,4-glucan homopolymers such as xyloglucan. The CBM46 was shown to contribute to xyloglucan hydrolysis only in the context of intact plant cell walls, but it potentiates enzymatic activity against purified ?-1,3–1,4-glucans in solution or within the cell wall. This report reveals the mechanism by which a CBM can promote enzyme activity through direct interaction with the substrate or by targeting regions of the plant cell wall where the target glucan is abundant.
|
Feb 2015
|
|
I02-Macromolecular Crystallography
|
Abstract: Microbial degradation of the plant cell wall is a fundamental biological process with considerable industrial importance. Hydrolysis of recalcitrant polysaccharides is orchestrated by a large repertoire of carbohydrate-active enzymes that
display a modular architecture in which a catalytic domain is connected via linker sequences to one or more noncatalytic carbohydrate-binding modules
(CBMs). CBMs direct the appended catalytic modules to their target substrates, thus potentiating catalysis. The genome of the most abundant ruminal
cellulolytic bacterium, Ruminococcus flavefaciens strain FD-1, provides an opportunity to discover novel cellulosomal proteins involved in plant cell-wall
deconstruction. It encodes a modular protein comprising a glycoside hydrolase family 9 catalytic module (GH9) linked to two unclassified tandemly repeated CBMs (termed CBM-Rf6A and CBM-Rf6B) and a C-terminal dockerin. The
novel CBM-Rf6A from this protein has been crystallized and data were processed for the native and a selenomethionine derivative to 1.75 and
1.5 A °resolution, respectively. The crystals belonged to orthorhombic and cubic space
groups, respectively. The structure was solved by a single-wavelength anomalous dispersion experiment using the CCP4 program suite and SHELXC/D/E.
|
Jan 2015
|
|
I02-Macromolecular Crystallography
|
Abstract: Anaerobic bacteria organize carbohydrate-active enzymes into a multi-component complex, the cellulosome, which degrades cellulose and hemicellulose highly efficiently. Genome sequencing of Ruminococcus flavefaciens FD-1 offers extensive information on the range and diversity of the enzymatic and structural components of the cellulosome. The R. flavefaciens FD-1 genome encodes over 200 dockerin-containing proteins, most of which are of unknown function. One of these modular proteins comprises a glycoside hydrolase family 5 catalytic module (GH5) linked to an unclassified carbohydrate-binding module (CBM-Rf1) and a dockerin. The novel CBM-Rf1 has been purified and crystallized. The crystals belonged to the trigonal space group R32:H. The CBM-Rf1 structure was determined by a multiple-wavelength anomalous dispersion experiment using AutoSol from the PHENIX suite using both selenomethionyl-derivative and native data to resolutions of 2.28 and 2.0 Å, respectively.
|
Dec 2014
|
|
I02-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Abstract: Cellulases catalyze the hydrolysis of cellulose, the major constituent of plant biomass and the most abundant organic polymer on earth. Cellulases are modular enzymes containing catalytic domains connected, via linker sequences, to noncatalytic carbohydrate-binding modules (CBMs). A putative modular endo-[beta]-1,4-glucanase (BhCel5B) is encoded at locus BH0603 in the genome of Bacillus halodurans. It is composed of an N-terminal glycoside hydrolase family 5 catalytic module (GH5) followed by an immunoglobulin-like module and a C-terminal family 46 CBM (BhCBM46). Here, the crystallization and preliminary X-ray diffraction analysis of the trimodular BhCel5B are reported. The crystals of BhCel5B belonged to the orthorhombic space group P2121 2 and data were processed to a resolution of 1.64 Å. A molecular-replacement solution has been found.
|
Dec 2014
|
|